Suppr超能文献

基于随机微观结构的有限元模型对功能梯度金属基复合材料中颗粒分散和损伤机制的洞察

Insights into particle dispersion and damage mechanisms in functionally graded metal matrix composites with random microstructure-based finite element model.

作者信息

Naguib M E, Gad S I, Megahed M, Agwa M A

机构信息

Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, P.O. Box 44519, Zagazig, Egypt.

出版信息

Sci Rep. 2024 Sep 6;14(1):20835. doi: 10.1038/s41598-024-70247-3.

Abstract

This study investigates the impact of particle volume fraction and distribution on the deformation and damage of particle-reinforced metal matrix composites, particularly in the context of functionally graded metal matrix composites. In this study, a two-dimensional nonlinear random microstructure-based finite element modeling approach implemented in ABAQUS/Explicit with a Python-generated script to analyze the deformation and damage mechanisms in composites. The plastic deformation and ductile cracking of the matrix are captured using the Gurson-Tvergaard-Needleman model, whereas particle fracture is modelled using the Johnson-Holmquist II model. Matrix-particle interface decohesion is simulated using the surface-based cohesive zone method. The findings reveal that functionally graded metal matrix composites exhibit higher hardness values ( ) than traditional metal matrix composites. The results highlight the importance of functionally graded metal matrix composites. Functionally graded metal matrix composites with a Gaussian distribution and a particle volume fraction of 10% achieve values comparable to particle-reinforced metal matrix composites with a particle volume fraction of 20%, with only a 2% difference in . Thus, can be improved significantly by employing a low particle volume fraction and incorporating a Gaussian distribution across the material thickness. Furthermore, functionally graded metal matrix composites with a Gaussian distribution exhibit higher values and better agreement with experimental distribution functions when compared to those with a power-law distribution.

摘要

本研究调查了颗粒体积分数和分布对颗粒增强金属基复合材料变形和损伤的影响,特别是在功能梯度金属基复合材料的背景下。在本研究中,采用在ABAQUS/Explicit中实现的基于二维非线性随机微观结构的有限元建模方法,并结合Python生成的脚本,来分析复合材料中的变形和损伤机制。基体的塑性变形和韧性开裂采用Gurson-Tvergaard-Needleman模型进行捕捉,而颗粒断裂则采用Johnson-Holmquist II模型进行建模。基体-颗粒界面脱粘采用基于表面的粘结带方法进行模拟。研究结果表明,功能梯度金属基复合材料比传统金属基复合材料具有更高的硬度值( )。结果突出了功能梯度金属基复合材料的重要性。具有高斯分布且颗粒体积分数为10%的功能梯度金属基复合材料所达到的 值与颗粒体积分数为20%的颗粒增强金属基复合材料相当, 仅相差2%。因此,通过采用低颗粒体积分数并在材料厚度上引入高斯分布,可以显著提高 。此外,与具有幂律分布的功能梯度金属基复合材料相比,具有高斯分布的功能梯度金属基复合材料具有更高的 值,并且与实验分布函数的吻合度更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe94/11379905/841c505b852a/41598_2024_70247_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验