Bates Christopher J, Alvarez George A, Gershman Samuel J
Department of Psychology, Harvard University, William James Hall, 33 Kirkland Street, Cambridge, MA, 02138, USA.
Commun Psychol. 2024 Jan 3;2(1):3. doi: 10.1038/s44271-023-00048-3.
Over the last few decades, psychologists have developed precise quantitative models of human recall performance in visual working memory (VWM) tasks. However, these models are tailored to a particular class of artificial stimulus displays and simple feature reports from participants (e.g., the color or orientation of a simple object). Our work has two aims. The first is to build models that explain people's memory errors in continuous report tasks with natural images. Here, we use image generation algorithms to generate continuously varying response alternatives that differ from the stimulus image in natural and complex ways, in order to capture the richness of people's stored representations. The second aim is to determine whether models that do a good job of explaining memory errors with natural images also explain errors in the more heavily studied domain of artificial displays with simple items. We find that: (i) features taken from state-of-the-art deep encoders predict trial-level difficulty in natural images better than several reasonable baselines; and (ii) the same visual encoders can reproduce set-size effects and response bias curves in the artificial stimulus domains of orientation and color. Moving forward, our approach offers a scalable way to build a more generalized understanding of VWM representations by combining recent advances in both AI and cognitive modeling.
在过去几十年里,心理学家们已经开发出了精确的定量模型,用于描述人类在视觉工作记忆(VWM)任务中的回忆表现。然而,这些模型是针对特定类别的人工刺激显示以及参与者的简单特征报告(例如,简单物体的颜色或方向)量身定制的。我们的工作有两个目标。第一个目标是构建模型,以解释人们在使用自然图像的连续报告任务中的记忆错误。在这里,我们使用图像生成算法来生成与刺激图像在自然和复杂方式上不同的连续变化的响应选项,以便捕捉人们存储表征的丰富性。第二个目标是确定能够很好地解释自然图像记忆错误的模型是否也能解释在对具有简单项目的人工显示进行更深入研究的领域中的错误。我们发现:(i)从最先进的深度编码器中提取的特征比几个合理的基线更能预测自然图像中的试验级难度;(ii)相同的视觉编码器可以在方向和颜色的人工刺激领域中重现集合大小效应和响应偏差曲线。展望未来,我们的方法通过结合人工智能和认知建模的最新进展,提供了一种可扩展的方式来建立对VWM表征更广义的理解。