Fel Thomas, Felipe Ivan, Linsley Drew, Serre Thomas
Department of Cognitive, Linguistic, & Psychological Sciences, Brown University, Providence, RI.
Artificial and Natural Intelligence Toulouse Institute (ANITI), Toulouse, France.
Adv Neural Inf Process Syst. 2022 Dec;35:9432-9446.
The many successes of deep neural networks (DNNs) over the past decade have largely been driven by computational scale rather than insights from biological intelligence. Here, we explore if these trends have also carried concomitant improvements in explaining the visual strategies humans rely on for object recognition. We do this by comparing two related but distinct properties of visual strategies in humans and DNNs: they believe important visual features are in images and they use those features to categorize objects. Across 84 different DNNs trained on ImageNet and three independent datasets measuring the and the of human visual strategies for object recognition on those images, we find a systematic trade-off between DNN categorization accuracy and alignment with human visual strategies for object recognition. . We rectify this growing issue with our neural harmonizer: a general-purpose training routine that both aligns DNN and human visual strategies and improves categorization accuracy. Our work represents the first demonstration that the scaling laws [1-3] that are guiding the design of DNNs today have also produced worse models of human vision. We release our code and data at https://serre-lab.github.io/Harmonization to help the field build more human-like DNNs.
在过去十年中,深度神经网络(DNN)的诸多成功很大程度上是由计算规模驱动的,而非来自生物智能的见解。在此,我们探讨这些趋势是否也在解释人类用于物体识别的视觉策略方面带来了相应的改进。我们通过比较人类和DNN视觉策略的两个相关但不同的属性来做到这一点:它们认为图像中哪些视觉特征是重要的,以及它们如何利用这些特征对物体进行分类。在84个在ImageNet上训练的不同DNN以及三个独立数据集上,这些数据集测量了人类在这些图像上进行物体识别的视觉策略的[具体两个属性未明确写出],我们发现DNN分类准确率与人类物体识别视觉策略的一致性之间存在系统的权衡。我们用我们的神经协调器纠正了这个日益严重的问题:这是一种通用的训练程序,既能使DNN和人类视觉策略保持一致,又能提高分类准确率。我们的工作首次证明,如今指导DNN设计的缩放定律[1 - 3]也产生了更差的人类视觉模型。我们在https://serre-lab.github.io/Harmonization上发布了我们的代码和数据,以帮助该领域构建更类人的DNN。