Jiang Xiaoqing, Dong Kaiwen, Li Pingping, Zheng Likai, Zhang Bingqian, Yin Yanfeng, Yang Guangyue, Wang Linqin, Wang Minhuan, Li Suying, Zhu Lina, Niu Shiyuan, Yu Shitao, Liu Shiwei, Tian Wenming, Guo Xin, Wei Mingyang, Zakeeruddin Shaik M, Sun Licheng, Pang Shuping, Grätzel Michael
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
Laboratory of Photonics and Interfaces, École polytechnique fédérale de Lausanne, Lausanne, 1015, Switzerland.
Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414128. doi: 10.1002/anie.202414128. Epub 2024 Nov 2.
Electron-withdrawing molecules (EWMs) have exhibited remarkable efficacy in boosting the performance of perovskite solar cells (PSCs). However, the underneath mechanisms governing their positive attributes remain inadequately understood. Herein, we conducted a comprehensive study on EWMs by comparing 2,2'-(2,5-cyclohexadiene-1,4-diylidene) bismalononitrile (TCNQ) and (2,3,5,6-tetrafluoro-2,5-cyclohexadiene-1,4-diylidene) dimalononitrile (F4TCNQ) employed at the perovskite/hole transport layer (HTL) interfaces. Our findings reveal that EWMs simultaneously enhance chemical passivation, interface dipole effect, and chemically binding of the perovskite to the HTL. Notably, F4TCNQ, with its superior electron-withdrawing properties, demonstrates a more pronounced impact. Consequently, PCSs modified with F4TCNQ achieved an impressive power conversion efficiency (PCE) of 25.21 %, while demonstrating excellent long-term stability. Moreover, the PCE of a larger-area perovskite module (14.0 cm) based on F4TCNQ reached 21.41 %. This work illuminates the multifaceted mechanisms of EWMs at the interfaces in PSCs, delivering pivotal insights that pave the way for the sophisticated design and strategic application of EWMs, thereby propelling the advancement of perovskite photovoltaic technology.
吸电子分子(EWMs)在提高钙钛矿太阳能电池(PSC)性能方面已展现出显著成效。然而,关于其积极特性背后的作用机制仍未得到充分理解。在此,我们通过比较在钙钛矿/空穴传输层(HTL)界面使用的2,2'-(2,5-环己二烯-1,4-二亚基)双丙二腈(TCNQ)和(2,3,5,6-四氟-2,5-环己二烯-1,4-二亚基)双丙二腈(F4TCNQ),对吸电子分子进行了全面研究。我们的研究结果表明,吸电子分子同时增强了化学钝化、界面偶极效应以及钙钛矿与空穴传输层的化学结合。值得注意的是,具有卓越吸电子性能的F4TCNQ表现出更为显著的影响。因此,用F4TCNQ修饰的钙钛矿太阳能电池实现了令人瞩目的25.21%的功率转换效率(PCE),同时展现出出色的长期稳定性。此外,基于F4TCNQ的大面积钙钛矿组件(14.0平方厘米)的功率转换效率达到了21.41%。这项工作阐明了吸电子分子在钙钛矿太阳能电池界面的多方面作用机制,提供了关键见解,为吸电子分子的精密设计和策略应用铺平了道路,从而推动钙钛矿光伏技术的进步。