Suppr超能文献

基于机器学习的 q-RASAR 预测有机分子的生物浓缩因子,该预测方法是按照经济合作与发展组织的指南 305 进行估算的。

Machine learning-based q-RASAR predictions of the bioconcentration factor of organic molecules estimated following the organisation for economic co-operation and development guideline 305.

机构信息

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, 188 Raja S C Mullick Road, 700032 Kolkata, India.

Global Product Compliance (Europe) AB, Ideon Beta 5, Scheelevägen 17, 223 63 Lund, Sweden.

出版信息

J Hazard Mater. 2024 Nov 5;479:135725. doi: 10.1016/j.jhazmat.2024.135725. Epub 2024 Sep 3.

Abstract

In this study, we utilized an innovative quantitative read-across (RA) structure-activity relationship (q-RASAR) approach to predict the bioconcentration factor (BCF) values of a diverse range of organic compounds, based on a dataset of 575 compounds tested using Organisation for Economic Co-operation and Development Test Guideline 305 for bioaccumulation in fish. Initially, we constructed the q-RASAR model using the partial least squares regression method, yielding promising statistical results for the training set (R =0.71, Q=0.68, mean absolute error [MAE]=0.54). The model was further validated using the test set (Q=0.77, Q=0.75, MAE=0.51). Subsequently, we explored the q-RASAR method using other regression-based supervised machine-learning algorithms, demonstrating favourable results for the training and test sets. All models exhibited R and Q values exceeding 0.7, Q values greater than 0.6, and low MAE values, indicating high model quality and predictive capability for new, unidentified chemical substances. These findings represent the significance of the RASAR method in enhancing predictivity for new unknown chemicals due to the incorporation of similarity functions in the RASAR descriptors, independent of a specific algorithm.

摘要

在这项研究中,我们利用创新的定量读通(RA)结构-活性关系(q-RASAR)方法,基于 OECD 测试指南 305 中测试的 575 种化合物的数据集,预测了多种有机化合物的生物浓缩因子(BCF)值。最初,我们使用偏最小二乘回归方法构建了 q-RASAR 模型,为训练集提供了有希望的统计结果(R=0.71,Q=0.68,平均绝对误差[MAE]=0.54)。该模型进一步使用测试集进行了验证(Q=0.77,Q=0.75,MAE=0.51)。随后,我们探索了 q-RASAR 方法在其他基于回归的监督机器学习算法中的应用,结果表明训练集和测试集的结果都很好。所有模型的 R 和 Q 值均超过 0.7,Q 值均大于 0.6,MAE 值均较低,这表明模型具有较高的质量和对新的、未识别的化学物质的预测能力。这些发现表明,由于 RASAR 描述符中包含相似性函数,因此无论使用哪种特定算法,RASAR 方法都可以增强对新未知化学物质的预测能力,这具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验