Suppr超能文献

利用可解释的结构参数改进对印度野鲮中有机化合物(包括有毒有机磷酸酯和多氯环状化合物)毒性的预测建模。

Improved predictive modeling of toxicity for organic compounds, including toxic organophosphates and polychlorinated cyclic compounds, in Labeo rohita using interpretable structural parameters.

作者信息

Keshavarz Mohammad Hossein, Amraei Monfared Azar

机构信息

Faculty of Applied Sciences, Malek-Ashtar University of Technology, Shahin-Shahr, Iran.

出版信息

Environ Sci Pollut Res Int. 2025 May;32(25):15287-15303. doi: 10.1007/s11356-025-36604-z. Epub 2025 Jun 9.

Abstract

Fish in aquatic ecosystems frequently encounter a range of biocides and contaminants due to ongoing chemical applications. Labeo rohita (rohu) is an important freshwater carp species, contributing over 15% to global carp production, which has seen significant growth in recent years. Existing predictive models, including quantitative structure-activity relationship (QSAR) and quantitative read-across structure-activity relationship (q-RASAR), depend on complex computer-based descriptors to evaluate the toxicity of organic compounds, including toxic organophosphates and polychlorinated cyclic organic compounds, on L. rohita. This study introduces interpretable structural parameters that significantly impact the pLC values (- log LC, where LC indicates the lethal concentration 50) for L. rohita. The new model shows improved predictive accuracy compared to traditional QSAR and q-RASAR models, achieving the high coefficient of determination (R2) and leave-one-out cross-validation score (Q) values that validate its reliability for future ecotoxicological applications. Additionally, applicability domain (AD) analysis demonstrates that the model can reliably predict toxicity for 297 compounds, reaching a 93% reliability rate, in contrast to the 81% reliability of conventional QSAR and q-RASAR models. This advancement makes it a valuable resource for filling toxicity data gaps in regulatory frameworks. Overall, this research enhances our understanding of the links between molecular structure and toxicity, facilitating the development of safer chemical alternatives and more effective predictive models for environmental risk assessment.

摘要

由于持续的化学应用,水生生态系统中的鱼类经常会接触到一系列生物杀灭剂和污染物。印度鯽(Labeo rohita)是一种重要的淡水鲤鱼品种,占全球鲤鱼产量的15%以上,近年来产量显著增长。现有的预测模型,包括定量构效关系(QSAR)和定量跨结构活性关系(q-RASAR),依赖于基于复杂计算机的描述符来评估有机化合物(包括有毒有机磷酸盐和多氯环状有机化合物)对印度鯽的毒性。本研究引入了对印度鯽的pLC值(-log LC,其中LC表示半数致死浓度)有显著影响的可解释结构参数。与传统的QSAR和q-RASAR模型相比,新模型的预测准确性有所提高,获得了高决定系数(R2)和留一法交叉验证分数(Q)值,验证了其在未来生态毒理学应用中的可靠性。此外,适用域(AD)分析表明,该模型能够可靠地预测297种化合物的毒性,可靠性率达到93%,而传统QSAR和q-RASAR模型的可靠性为81%。这一进展使其成为填补监管框架中毒性数据空白的宝贵资源。总体而言,本研究增进了我们对分子结构与毒性之间联系的理解,有助于开发更安全的化学替代品和更有效的环境风险评估预测模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验