School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
J Environ Manage. 2024 Nov;370:122390. doi: 10.1016/j.jenvman.2024.122390. Epub 2024 Sep 6.
The establishment of S-scheme heterojunctions represents an effective strategy for enhancing the transfer and separation of charge carriers, thereby bolstering redox capacities and consequently benefiting subsequent photocatalytic reactions. In this study, the pristine BiOI underwent a facile vulcanization process to in-situ produce various composites. Systematical characterizations confirmed the simultaneous generation of BiOI/BiS (BI-BS) heterojunctions with surface oxygen vacancies (OVs). Under visible light, these BI-BS composites exhibited improved NO removal efficiencies with reduced NO generation compared to bare BiOI. Particularly, the best candidate BI-BS2 possesses the highest NO removal (43.02%) and lowest NO generation (5.44%) among all tested samples. The improvement was primarily attributed to synergetic effects of heterojunction and surface OVs, including enhanced charge separation, heightened light responsiveness, and improved generation of reactive oxygen-containing species through an S-scheme mode. Furthermore, the Density Functional Theory (DFT) calculations had demonstrated that the establishment of BI-BS heterojunctions with surface OVs not only optimized the electronic structure to facilitate the transfer and separation of charge carriers, but also significantly enhanced the adsorption of NO, HO, and O molecules, ultimately favoring the generation of NO species. These as-synthesized composites indicated sufficient structural stability and hold potential for the photocatalytic removal of NO at ppb levels.
S 型异质结的建立是一种有效的增强电荷载流子转移和分离的策略,从而提高氧化还原能力,进而有益于后续的光催化反应。在这项研究中,原始的 BiOI 通过简单的硫化过程原位生成各种复合材料。系统的特性表明,BiOI/BiS(BI-BS)异质结同时具有表面氧空位(OVs)。在可见光下,与纯 BiOI 相比,这些 BI-BS 复合材料表现出更高的 NO 去除效率和更低的 NO 生成量。特别是,最佳候选物 BI-BS2 在所有测试样品中具有最高的 NO 去除率(43.02%)和最低的 NO 生成量(5.44%)。这种改善主要归因于异质结和表面 OVs 的协同作用,包括增强的电荷分离、提高的光响应性以及通过 S 型模式生成更多的含氧活性物质。此外,密度泛函理论(DFT)计算表明,具有表面 OVs 的 BI-BS 异质结的建立不仅优化了电子结构,促进了电荷载流子的转移和分离,而且还显著增强了 NO、HO 和 O 分子的吸附,最终有利于 NO 物种的生成。这些合成的复合材料表明具有足够的结构稳定性,并且有潜力在 ppb 水平下用于光催化去除 NO。