Yue Hong-Li, Zeng Hong-Yan, Peng Jin-Feng, Yan Wei, Zhang Kai, Luo Chao-Wei, Tian Zi-Feng
College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China.
College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China.
J Colloid Interface Sci. 2025 Jan 15;678(Pt B):221-232. doi: 10.1016/j.jcis.2024.08.254. Epub 2024 Sep 2.
Constructing amorphous/crystalline heterophase structure with high porosity is a promising strategy to effectively tailor the physicochemical properties of electrode materials and further improve the electrochemical performance of supercapacitors. Here, the porous C-doped NiO (C-NiO) with amorphous/crystalline heterophase grown on NF was prepared using NF as Ni source via a self-sacrificial template method. Calcining the self-sacrificial NiCO template at a suitable temperature (400 °C) was beneficial to the formation of porous heterophase structure with abundant cavities and cracks, resulting in high electrical conductivity and rich ion/electron-transport channels. The density functional theory (DFT) calculations further verified that in-situ C-doping could modulate the electronic structure and enhance the OH adsorption capability. The unique porous amorphous/crystalline heterophase structure greatly accelerated electrons/ions transfer and Faradaic reaction kinetic, which effectively improved the charge storage. The C-NiO calcined at 400 °C (C-NiO) displayed a markedly enhanced specific charge, outstanding rate property and excellent cycling stability. Furthermore, the hybrid supercapacitor assembled by C-NiO and active carbon achieved a high energy density of 49.0 Wh kg at 800 W kg and excellent cycle stability (90.9 % retention at 5 A/g after 10 000 cycles). This work provided a new strategy for designing amorphous/crystalline heterophase electrode materials in high-performance energy storage.
构建具有高孔隙率的非晶态/晶态异相结构是有效调整电极材料物理化学性质并进一步提高超级电容器电化学性能的一种有前景的策略。在此,通过自牺牲模板法,以NF作为Ni源,制备了在NF上生长有非晶态/晶态异相的多孔C掺杂NiO(C-NiO)。在合适的温度(400℃)下煅烧自牺牲NiCO模板有利于形成具有丰富孔洞和裂纹的多孔异相结构,从而产生高电导率和丰富的离子/电子传输通道。密度泛函理论(DFT)计算进一步证实原位C掺杂可以调节电子结构并增强OH吸附能力。独特的多孔非晶态/晶态异相结构极大地加速了电子/离子转移和法拉第反应动力学,有效改善了电荷存储。在400℃煅烧的C-NiO表现出显著增强的比电荷、出色的倍率性能和优异的循环稳定性。此外,由C-NiO和活性炭组装的混合超级电容器在800W/kg时实现了49.0Wh/kg 的高能量密度和优异的循环稳定性(10000次循环后在5A/g下保留90.9%)。这项工作为设计用于高性能储能的非晶态/晶态异相电极材料提供了一种新策略。