Zhang Xiaoyan, Ni Wenkang, Yue Xuanyu, Wang Zhijie, Zhang Zizhong, Wang Ke, Dai Wenxin, Fu Xianzhi
Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, PR China.
Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China.
J Colloid Interface Sci. 2025 Jan 15;678(Pt B):233-245. doi: 10.1016/j.jcis.2024.09.023. Epub 2024 Sep 3.
Converting CO into CO, CH, and other hydrocarbons using solar energy presents a viable approach for addressing energy shortages. In this study, photocatalysts with S-deficient WO/ZnInS (WO/V-ZIS) S-scheme heterojunctions have been successfully synthesized. Under UV-vis light irradiation, 20 %WO/V-ZIS demonstrated significantly improved CO reduction activity and CH selectivity. Detailed characterization and density functional theory (DFT) calculations reveal that the enhanced performance is due to the synergistic optimization of the S-scheme heterojunction and sulfur vacancies (V) for CO reduction. The presence of V aids in the adsorption and activation of CO and enhances the separation of charge carriers. The 2D/2D S-scheme heterostructure assembled with WO nanosheets not only accelerates the migration and separation of photoexcited charge carriers but also improves the adsorption of HO and the formation of V, thereby increasing the adsorption and activation of CO and facilitating the protonation of CO* to produce CH. This study clarifies the synergistic effect of V and S-scheme heterostructures in improving photocatalytic performance, offering valuable insights into the photoactivation process of CO at V in S-scheme heterojunctions.
利用太阳能将一氧化碳转化为二氧化碳、甲烷和其他碳氢化合物是解决能源短缺的一种可行方法。在本研究中,成功合成了具有硫缺陷的WO/ZnInS(WO/V-ZIS)S型异质结光催化剂。在紫外-可见光照射下,20%的WO/V-ZIS表现出显著提高的一氧化碳还原活性和甲烷选择性。详细的表征和密度泛函理论(DFT)计算表明,性能的提高归因于S型异质结和硫空位(V)对一氧化碳还原的协同优化。V的存在有助于一氧化碳的吸附和活化,并增强电荷载流子的分离。由WO纳米片组装而成的二维/二维S型异质结构不仅加速了光激发电荷载流子的迁移和分离,还提高了羟基的吸附和V的形成,从而增加了一氧化碳的吸附和活化,并促进了CO*的质子化以生成甲烷。本研究阐明了V和S型异质结构在提高光催化性能方面的协同效应,为S型异质结中V处一氧化碳的光活化过程提供了有价值的见解。
ACS Appl Mater Interfaces. 2023-10-11
J Colloid Interface Sci. 2023-11-15
J Colloid Interface Sci. 2023-12