Jia Zhenzhen, Xiao Yuting, Guo Shien, Xiong Liangliang, Yu Peng, Lu Tianyu, Song Renjie
Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
Institute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
ACS Appl Mater Interfaces. 2023 Oct 11;15(40):47070-47080. doi: 10.1021/acsami.3c10503. Epub 2023 Sep 29.
The photocatalytic reduction of CO with HO into valuable chemicals is a sustainable carbon-neutral technology for renewable energy; however, the photocatalytic activity and product selectivity remain challenging. Herein, an S-scheme heterojunction photocatalyst with superior CO photoreduction performance─porous CN (CN) nanosheets anchored with zinc(II) tetra(4-cyanophenyl)porphyrin (ZnTP) nanoassemblies (denoted as ZnTP/CN)─was designed and prepared via a simple self-assembly process. The constructed ZnTP/CN heterojunction had rich accessible active sites, improved CO absorption capacity, and high charge carrier separation efficiency caused by the S-scheme heterojunction. As a result, the obtained ZnTP/CN catalyst exhibited considerable activity for photocatalytic CO reduction, yielding CO with a generation rate of 19.4 μmol g·h and a high selectivity of 95.8%, which is much higher than that of pristine CN nanosheets (4.53 μmol g·h, 57.4%). In addition, theoretical calculations and in situ Fourier transform infrared spectra demonstrated that the Zn sites in the porphyrin unit favor CO activation and *COOH formation as well as CO desorption, thereby affording a high CO selectivity. This work provides insight into the design and fabrication of efficient S-scheme heterostructure photocatalysts for solar energy storage.
利用水将二氧化碳光催化还原为有价值的化学品是一种用于可再生能源的可持续碳中和技术;然而,光催化活性和产物选择性仍然具有挑战性。在此,通过简单的自组装过程设计并制备了一种具有优异二氧化碳光还原性能的S型异质结光催化剂——锚定有四(4-氰基苯基)锌卟啉(ZnTP)纳米聚集体的多孔石墨相氮化碳(CN)纳米片(表示为ZnTP/CN)。构建的ZnTP/CN异质结具有丰富的可及活性位点、提高的二氧化碳吸收能力以及由S型异质结引起的高电荷载流子分离效率。结果,所制备的ZnTP/CN催化剂在光催化二氧化碳还原方面表现出可观的活性,一氧化碳生成速率为19.4 μmol g·h,选择性高达95.8%,远高于原始CN纳米片(4.53 μmol g·h,57.4%)。此外,理论计算和原位傅里叶变换红外光谱表明,卟啉单元中的锌位点有利于一氧化碳活化、*COOH形成以及一氧化碳解吸,从而实现了高一氧化碳选择性。这项工作为高效S型异质结构光催化剂用于太阳能存储的设计和制备提供了见解。