Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Catedrático Agustín Escardino Benlloch, 7, 46980 Paterna, Valencia, Spain.
Westerdijk Fungal Biodiversity Institute, Utrecht 3584, the Netherlands.
Int J Food Microbiol. 2025 Jan 2;426:110899. doi: 10.1016/j.ijfoodmicro.2024.110899. Epub 2024 Sep 4.
Yeast optimisation has been crucial in improving the quality and efficiency of beer production, one of the world's most widely consumed beverages. In this context, rare mating hybridisation is a promising technique for yeast optimization to generate novel and improved non-GMO strains. The limitation of this technique is the lack of knowledge and comparable data on yeast strains hybridisable to Saccharomyces cerevisiae, probably the most important yeast species in beer production. Yeast from the genera Saccharomyces, Naumovozyma, Nakaseomyces and Kazachstania have been described to be able to form hybrids with S. cerevisiae. In the present study, 242 yeast strains were analysed under brewing conditions, including Saccharomyces species (S. cerevisiae, S. kudriavzevii, S. uvarum, S. eubayanus, S. paradoxus, S. mikatae, S. jurei and S. arboricola) and non-Saccharomyces species (Naumovozyma, Nakaseomyces and Kazaschtania), representing the full genetic variability (species and subpopulations) described up to the start of the study. The fermentation profile was analysed by monitoring weight loss during fermentation to determine kinetic parameters and CO production. Metabolic analysis was performed to determine the concentration of sugars (maltotriose, maltose and glucose), alcohols (ethanol, glycerol and 2,3-butanediol) and organic acids (malic acid, succinic acid and acetic acid). Maltose and maltotriose are the predominant sugars in beer wort. The ability to consume these sugars determines the characteristics of the final product. Dataset comparisons were then made at species, subpopulation and isolation source level. The results obtained in this study demonstrate the great phenotypic variability that exists within the genus Saccharomyces and within each species of this genus, which could be useful in the generation of optimised brewing hybrids. Yeasts with different fermentative capacities and fermentative behaviours can be found under brewing conditions. S. cerevisiae, S. uvarum and S. eubayanus are the species that contain strains with similar fermentation performance to commercial strains.
酵母优化在提高啤酒生产质量和效率方面至关重要,啤酒是世界上消费最广泛的饮料之一。在这种情况下,稀有交配杂交是酵母优化的一种很有前途的技术,可以产生新型和改进的非转基因菌株。这种技术的局限性在于缺乏对可与酿酒酵母(啤酒生产中最重要的酵母物种之一)杂交的酵母菌株的了解和可比数据。已经描述了来自酿酒酵母属、假丝酵母属、nakaseomyces 和 kazachstania 属的酵母能够与 S. cerevisiae 形成杂种。在本研究中,在酿造条件下分析了 242 株酵母菌株,包括酿酒酵母种(S. cerevisiae、S. kudriavzevii、S. uvarum、S. eubayanus、S. paradoxus、S. mikatae、S. jurei 和 S. arboricola)和非酿酒酵母种(假丝酵母属、nakaseomyces 和 kazaschtania),代表了截至研究开始时描述的全部遗传变异性(种和亚种群)。通过监测发酵过程中的失重来分析发酵过程的发酵特性,以确定动力学参数和 CO 生成。进行代谢分析以确定糖(麦芽三糖、麦芽糖和葡萄糖)、醇(乙醇、甘油和 2,3-丁二醇)和有机酸(苹果酸、琥珀酸和乙酸)的浓度。麦芽糖和麦芽三糖是啤酒麦芽汁中的主要糖。消耗这些糖的能力决定了最终产品的特性。然后在种、亚种群和分离源水平上对数据集进行比较。本研究的结果表明,在酿酒酵母属内以及该属的每个种内存在很大的表型变异性,这在产生优化的酿造杂种方面可能是有用的。在酿造条件下可以发现具有不同发酵能力和发酵行为的酵母。S. cerevisiae、S. uvarum 和 S. eubayanus 是包含与商业菌株具有相似发酵性能菌株的物种。