Kothari Manan, Kannan Karthika, Sahadevan Revathy, Retnakumar Sruthi Vijaya, Chauvin Camille, Bayry Jagadeesh, Sadhukhan Sushabhan
Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India.
Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France.
Bioorg Chem. 2024 Dec;153:107786. doi: 10.1016/j.bioorg.2024.107786. Epub 2024 Sep 3.
Uncontrolled hyperglycemia leads to increased oxidative stress, chronic inflammation, and insulin resistance, rendering diabetes management harder to accomplish. To tackle these myriads of challenges, researchers strive to explore innovative multifaceted treatment strategies, including inhibiting carbohydrate hydrolases. Herein, we report alkyl-ether EGCG derivatives as potent α-amylase and α-glucosidase inhibitors that could simultaneously ameliorate oxidative stress and inflammation. 4″-C EGCG, the most promising compound, showed multifold improvement in glycaemic management compared to acarbose, with 230-fold greater inhibition (competitive) of α-glucosidase (IC 0.81 µM) and 3-fold better inhibition of α-amylase (IC 3.74 µM). All derivatives showed stronger antioxidant activity (IC 6.16-15.76 µM) than vitamin C, while acarbose showed none. 4″-C EGCG also downregulated pro-inflammatory cytokines and showed no significant cytotoxicity up to 50 µM in primary human peripheral blood mononuclear cells (PBMC), non-cancerous cell line, 3T3-L1 and HEK 293. The in silico binding affinity analysis of 4″-C EGCG with α-amylase and α-glucosidase was found to exhibit a good extent of interaction as compared to acarbose. In comparison to EGCG, 4″-C EGCG derivatives were found to remain stable in the physiological conditions even after 24 h. Together, the reported molecules demonstrated multifaceted antidiabetic potential inhibiting carbohydrate hydrolases, reducing oxidative stress, and inflammation, which are known to aggravate diabetes.
不受控制的高血糖会导致氧化应激增加、慢性炎症和胰岛素抵抗,使糖尿病管理更加难以实现。为应对这些众多挑战,研究人员努力探索创新的多方面治疗策略,包括抑制碳水化合物水解酶。在此,我们报告烷基醚表没食子儿茶素没食子酸酯(EGCG)衍生物是有效的α-淀粉酶和α-葡萄糖苷酶抑制剂,可同时改善氧化应激和炎症。最有前景的化合物4″-C EGCG在血糖管理方面比阿卡波糖有多重改善,对α-葡萄糖苷酶的抑制作用(竞争性)比阿卡波糖高230倍(IC 0.81 μM),对α-淀粉酶的抑制作用比阿卡波糖好3倍(IC 3.74 μM)。所有衍生物均表现出比维生素C更强的抗氧化活性(IC 6.16 - 15.76 μM),而阿卡波糖则没有。4″-C EGCG还下调促炎细胞因子,在原代人外周血单核细胞(PBMC)、非癌细胞系3T3-L1和HEK 293中,高达50 μM时均未显示出明显的细胞毒性。与阿卡波糖相比,发现4″-C EGCG与α-淀粉酶和α-葡萄糖苷酶的计算机模拟结合亲和力分析显示出良好程度的相互作用。与EGCG相比,发现4″-C EGCG衍生物即使在24小时后在生理条件下仍保持稳定。总之,所报道的分子展示了多方面的抗糖尿病潜力,抑制碳水化合物水解酶、减少氧化应激和炎症,而这些已知会加重糖尿病。