Suppr超能文献

基于深度学习和生成模型的潜在环保型全氟烷基物质的分子设计。

Molecular designing of potential environmentally friendly PFAS based on deep learning and generative models.

机构信息

Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.

Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.

出版信息

Sci Total Environ. 2024 Nov 25;953:176095. doi: 10.1016/j.scitotenv.2024.176095. Epub 2024 Sep 6.

Abstract

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are widely used across a spectrum of industrial and consumer goods. Nonetheless, their persistent nature and tendency to accumulate in biological systems pose substantial environmental and health threats. Consequently, striking a balance between maximizing product efficiency and minimizing environmental and health risks by tailoring the molecular structure of PFAS has become a pivotal challenge in the fields of environmental chemistry and sustainable development. To address this issue, a computational workflow was proposed for designing an environmentally friendly PFAS by incorporating deep learning (DL) and molecular generative models. The hybrid DL architecture MolHGT+ based on heterogeneous graph neural network with transformer-like attention was applied to predict the surface tension, bioaccumulation, and hepatotoxicity of the molecules. Through virtual screening of the PFAS master database using MolHGT+, the findings indicate that incorporating the siloxane group and betaine fragment can effectively decrease both the bioaccumulation and hepatotoxicity of PFAS while preserving low surface tension. In addition, molecular generative models were employed to create a structurally diverse pool of novel PFASs with the aforementioned hit molecules serving as the initial template structures. Overall, our study presents a promising AI-driven method for advancing the development of environmentally friendly PFAS.

摘要

全氟烷基和多氟烷基物质 (PFAS) 广泛应用于各种工业和消费品中。然而,它们的持久性和在生物系统中积累的趋势对环境和健康构成了重大威胁。因此,通过调整 PFAS 的分子结构,在最大限度地提高产品效率和最小化环境和健康风险之间取得平衡,已成为环境化学和可持续发展领域的一个关键挑战。为了解决这个问题,提出了一种通过将深度学习 (DL) 和分子生成模型相结合来设计环保型 PFAS 的计算工作流程。基于具有变压器样注意力的异构图神经网络的混合 DL 架构 MolHGT+ 被应用于预测分子的表面张力、生物累积性和肝毒性。通过使用 MolHGT+对 PFAS 主数据库进行虚拟筛选,结果表明,在保留低表面张力的同时,引入硅氧烷基团和甜菜碱片段可以有效降低 PFAS 的生物累积性和肝毒性。此外,分子生成模型被用于创建具有上述命中分子作为初始模板结构的结构多样的新型 PFAS 池。总的来说,我们的研究提出了一种有前途的人工智能驱动方法,用于推进环保型 PFAS 的开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验