Yan Kun, Chen Ding, Guo Xiaoming, Wan Yekai, Yang Chenguang, Wang Wenwen, Li Xiufang, Lu Zhentan, Wang Dong
Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China.
Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China.
Carbohydr Polym. 2024 Dec 15;346:122609. doi: 10.1016/j.carbpol.2024.122609. Epub 2024 Aug 12.
Rational designs of polysaccharide-based hydrogels with organ-like three-dimensional architecture provide a great possibility for addressing the shortages of allograft tissues and organs. However, spatial-temporal control over structure in bulk hydrogel and acquire satisfied mechanical properties remain an intrinsic challenge to achieve. Here, we show how electric-field assisted molecular self-assembly can be coupled to a directional reaction-diffusion (RD) process to produce macroscopic hydrogel in a controllable manner. The electrical energy input was not only to generate complex molecule gradients and initiate the molecular self-assembly, but also to guide/facilitate the RD processes for the gel rapid growth via a cascade construction interaction. The hydrogel mechanical properties can be tuned and enhanced by using an interpenetrating biopolymer network and multiple ionic crosslinkers, leading to a wide-range of mechanical modulus to match with biological organs or tissues. We demonstrate diverse 3D macroscopic hydrogels can be easily prepared via field-assisted directional reaction-diffusion and specific joint interactions. The humility-triggered dissipation of functional gradients and antibacterial performance confirm that the hydrogels can serve as an optically variable soft device for wound management. Therefore, this work provides a general approach toward the rational fabrication of soft hydrogels with controlled architectures and functionality for advanced biomedical systems.
具有类器官三维结构的多糖基水凝胶的合理设计为解决同种异体移植组织和器官的短缺提供了很大的可能性。然而,对块状水凝胶结构进行时空控制并获得令人满意的机械性能仍然是一个内在的挑战。在此,我们展示了电场辅助分子自组装如何与定向反应扩散(RD)过程相结合,以可控方式制备宏观水凝胶。电能输入不仅用于产生复杂的分子梯度并启动分子自组装,还通过级联构建相互作用引导/促进RD过程以实现凝胶的快速生长。通过使用互穿生物聚合物网络和多种离子交联剂,可以调节和增强水凝胶的机械性能,从而产生与生物器官或组织相匹配的广泛机械模量。我们证明,通过场辅助定向反应扩散和特定的关节相互作用,可以轻松制备各种三维宏观水凝胶。湿度引发的功能梯度消散和抗菌性能证实,水凝胶可作为用于伤口管理的光学可变软装置。因此,这项工作为合理制造具有可控结构和功能的软水凝胶以用于先进生物医学系统提供了一种通用方法。