Suppr超能文献

检测美国军人和退伍军人中的自杀风险:一种使用社交媒体数据的深度学习方法。

Detecting suicide risk among U.S. servicemembers and veterans: a deep learning approach using social media data.

作者信息

Zuromski Kelly L, Low Daniel M, Jones Noah C, Kuzma Richard, Kessler Daniel, Zhou Liutong, Kastman Erik K, Epstein Jonathan, Madden Carlos, Ghosh Satrajit S, Gowel David, Nock Matthew K

机构信息

Department of Psychology, Harvard University, Cambridge, MA, USA.

Franciscan Children's, Brighton, MA, USA.

出版信息

Psychol Med. 2024 Sep 9:1-10. doi: 10.1017/S0033291724001557.

Abstract

BACKGROUND

Military Servicemembers and Veterans are at elevated risk for suicide, but rarely self-identify to their leaders or clinicians regarding their experience of suicidal thoughts. We developed an algorithm to identify posts containing suicide-related content on a military-specific social media platform.

METHODS

Publicly-shared social media posts ( = 8449) from a military-specific social media platform were reviewed and labeled by our team for the presence/absence of suicidal thoughts and behaviors and used to train several machine learning models to identify such posts.

RESULTS

The best performing model was a deep learning (RoBERTa) model that incorporated post text and metadata and detected the presence of suicidal posts with relatively high sensitivity (0.85), specificity (0.96), precision (0.64), F1 score (0.73), and an area under the precision-recall curve of 0.84. Compared to non-suicidal posts, suicidal posts were more likely to contain explicit mentions of suicide, descriptions of risk factors (e.g. depression, PTSD) and help-seeking, and first-person singular pronouns.

CONCLUSIONS

Our results demonstrate the feasibility and potential promise of using social media posts to identify at-risk Servicemembers and Veterans. Future work will use this approach to deliver targeted interventions to social media users at risk for suicide.

摘要

背景

军人和退伍军人自杀风险较高,但很少就其自杀想法向领导或临床医生自我表露。我们开发了一种算法,用于识别军事专用社交媒体平台上包含自杀相关内容的帖子。

方法

我们团队对军事专用社交媒体平台上公开分享的社交媒体帖子(n = 8449)进行了审查,并标记了是否存在自杀想法和行为,用于训练多个机器学习模型以识别此类帖子。

结果

表现最佳的模型是一个深度学习(RoBERTa)模型,该模型结合了帖子文本和元数据,检测自杀帖子存在的灵敏度相对较高(0.85)、特异性(0.96)、精准度(0.64)、F1分数(0.73),精确召回曲线下面积为0.84。与非自杀帖子相比,自杀帖子更有可能明确提及自杀、描述风险因素(如抑郁症、创伤后应激障碍)和寻求帮助,以及使用第一人称单数代词。

结论

我们的结果证明了利用社交媒体帖子识别有风险的军人和退伍军人的可行性和潜在前景。未来的工作将使用这种方法为有自杀风险的社交媒体用户提供有针对性的干预措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验