Carrasco Javier
Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48 , Vitoria-Gasteiz 01510, Spain.
IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5 , Bilbao 48009, Spain.
Philos Trans A Math Phys Eng Sci. 2024 Oct 23;382(2281):20230313. doi: 10.1098/rsta.2023.0313. Epub 2024 Sep 9.
Solid-state ionic conductors find application across various domains in materials science, particularly showcasing their significance in energy storage and conversion technologies. To effectively utilize these materials in high-performance electrochemical devices, a comprehensive understanding and precise control of charge carriers' distribution and ionic mobility at interfaces are paramount. A major challenge lies in unravelling the atomic-level processes governing ion dynamics within intricate solid and interfacial structures, such as grain boundaries and heterophases. From a theoretical viewpoint, in this Perspective article, my focus is to offer an overview of the current comprehension of key aspects related to solid-state ionic interfaces, with a particular emphasis on solid electrolytes for batteries, while providing a personal critical assessment of recent research advancements. I begin by introducing fundamental concepts for understanding solid-state conductors, such as the classical diffusion model and chemical potential. Subsequently, I delve into the modelling of space-charge regions, which are pivotal for understanding the physicochemical origins of charge redistribution at electrified interfaces. Finally, I discuss modern computational methods, such as density functional theory and machine-learned potentials, which offer invaluable tools for gaining insights into the atomic-scale behaviour of solid-state ionic interfaces, including both ionic mobility and interfacial reactivity aspects. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.
固态离子导体在材料科学的各个领域都有应用,尤其在能量存储和转换技术中彰显出其重要性。为了在高性能电化学装置中有效利用这些材料,全面理解并精确控制界面处电荷载流子的分布和离子迁移率至关重要。一个主要挑战在于弄清楚复杂的固体和界面结构(如晶界和异相)中控制离子动力学的原子级过程。从理论角度来看,在这篇观点文章中,我的重点是概述当前对固态离子界面相关关键方面的理解,特别强调用于电池的固体电解质,同时对近期的研究进展给出个人批判性评估。我首先介绍理解固态导体的基本概念,如经典扩散模型和化学势。随后,我深入探讨空间电荷区的建模,这对于理解带电界面处电荷重新分布的物理化学起源至关重要。最后,我讨论现代计算方法,如密度泛函理论和机器学习势,它们为深入了解固态离子界面的原子尺度行为(包括离子迁移率和界面反应性方面)提供了宝贵工具。本文是“庆祝皇家学会牛顿国际奖学金设立15周年”主题特刊的一部分。