Suppr超能文献

一种用于元素周期表的通用图深度学习原子间势能。

A universal graph deep learning interatomic potential for the periodic table.

机构信息

Department of NanoEngineering, University of California, San Diego, CA, USA.

出版信息

Nat Comput Sci. 2022 Nov;2(11):718-728. doi: 10.1038/s43588-022-00349-3. Epub 2022 Nov 28.

Abstract

Interatomic potentials (IAPs), which describe the potential energy surface of atoms, are a fundamental input for atomistic simulations. However, existing IAPs are either fitted to narrow chemistries or too inaccurate for general applications. Here we report a universal IAP for materials based on graph neural networks with three-body interactions (M3GNet). The M3GNet IAP was trained on the massive database of structural relaxations performed by the Materials Project over the past ten years and has broad applications in structural relaxation, dynamic simulations and property prediction of materials across diverse chemical spaces. About 1.8 million materials from a screening of 31 million hypothetical crystal structures were identified to be potentially stable against existing Materials Project crystals based on M3GNet energies. Of the top 2,000 materials with the lowest energies above the convex hull, 1,578 were verified to be stable using density functional theory calculations. These results demonstrate a machine learning-accelerated pathway to the discovery of synthesizable materials with exceptional properties.

摘要

原子间势(IAP)描述了原子的势能面,是原子模拟的基本输入。然而,现有的 IAP 要么是针对狭窄的化学物质进行拟合,要么就是不够准确,无法适用于一般应用。在这里,我们报告了一种基于具有三体相互作用的图神经网络的通用材料 IAP(M3GNet)。M3GNet IAP 是在过去十年中由 Materials Project 进行的大量结构弛豫数据库上进行训练的,它在材料的结构弛豫、动力学模拟和性能预测方面具有广泛的应用,可以跨越不同的化学空间。基于 M3GNet 能量,从 3100 万个假设晶体结构的筛选中识别出约 180 万种材料,这些材料相对于现有的 Materials Project 晶体具有潜在的稳定性。在能量高于凸包的前 2000 种材料中,有 1578 种通过密度泛函理论计算被验证为稳定。这些结果表明,机器学习可以加速发现具有特殊性能的可合成材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验