Suppr超能文献

极端降水减少了在成熟温带森林的生态系统呼吸中检测到的近期光合碳同位素信号。

Extreme precipitation reduces the recent photosynthetic carbon isotope signal detected in ecosystem respiration in an old-growth temperate forest.

机构信息

Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland.

CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang, China.

出版信息

Tree Physiol. 2024 Oct 3;44(10). doi: 10.1093/treephys/tpae118.

Abstract

The successful utilization of stable carbon isotope approaches in investigating forest carbon dynamics has relied on the assumption that the carbon isotope compositions (δ13C) therein have detectable temporal variations. However, interpreting the δ13C signal transfer can be challenging, given the complexities involved in disentangling the effect of a single environmental factor, the isotopic dilution effect from background CO2 and the lack of high-resolution δ13C measurements. In this study, we conducted continuous in situ monitoring of atmospheric CO2 (δ13Ca) across a canopy profile in an old-growth temperate forest in northeast China during the normal year 2020 and the wet year 2021. Both years exhibited similar temperature conditions in terms of both seasonal variations and annual averages. We tracked the natural carbon isotope composition from δ13Ca to photosynthate (δ13Cp) and to ecosystem respiration (δ13CReco). We observed significant differences in δ13Ca between the two years. Contrary to in 2020, in 2021 there was a δ13Ca valley in the middle of the growing season, attributed to surges in soil CO2 efflux induced by precipitation, while in 2020 values peaked during that period. Despite substantial and similar seasonal variations in canopy photosynthetic discrimination (Δ13Ccanopy) in the two years, the variability of δ13Cp in 2021 was significantly lower than in 2020, due to corresponding differences in δ13Ca. Furthermore, unlike in 2020, we found almost no changes in δ13CReco in 2021, which we ascribed to the imprint of the δ13Cp signal on above-ground respiration and, more importantly, to the contribution of stable δ13C signals from soil heterotrophic respired CO2. Our findings suggest that extreme precipitation can impede the detectability of recent photosynthetic δ13C signals in ecosystem respiration in forests, thus complicating the interpretation of above- and below-ground carbon linkage using δ13CReco. This study provides new insights for unravelling precipitation-related variations in forest carbon dynamics using stable isotope techniques.

摘要

利用稳定碳同位素方法研究森林碳动态的成功与否取决于这样一个假设,即其中的碳同位素组成(δ13C)具有可检测的时间变化。然而,由于需要厘清单个环境因素的影响、背景 CO2 的同位素稀释效应以及缺乏高分辨率 δ13C 测量,因此解释 δ13C 信号传递可能具有挑战性。在本研究中,我们在中国东北一个古老温带森林的冠层剖面中进行了连续的大气 CO2(δ13Ca)原位监测,监测时间横跨正常年份 2020 年和湿润年份 2021 年。这两年的季节性变化和年平均值都表现出相似的温度条件。我们跟踪了从 δ13Ca 到光合作用产物(δ13Cp)和生态系统呼吸(δ13CReco)的天然碳同位素组成。我们观察到了这两年中 δ13Ca 的显著差异。与 2020 年不同,2021 年生长季中期出现了一个 δ13Ca 低谷,这归因于降水引起的土壤 CO2 通量的激增,而 2020 年同期则达到峰值。尽管这两年的冠层光合作用分馏(Δ13Ccanopy)具有显著且相似的季节性变化,但 2021 年 δ13Cp 的可变性显著低于 2020 年,这是由于 δ13Ca 的相应差异造成的。此外,与 2020 年不同,我们发现 2021 年 δ13CReco 几乎没有变化,我们将其归因于 δ13Cp 信号对地上呼吸的影响,更重要的是,归因于土壤异养呼吸 CO2 中稳定 δ13C 信号的贡献。我们的研究结果表明,极端降水可能会阻碍森林生态系统呼吸中最近光合作用 δ13C 信号的可检测性,从而使利用 δ13CReco 解释地上和地下碳联系变得更加复杂。本研究为利用稳定同位素技术揭示与降水有关的森林碳动态变化提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c58/11469762/5defaa6f490d/tpae118f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验