Yamada Wakana, Tomoshige Shusuke, Nakamura Sho, Sato Shinichi, Ishikawa Minoru
Graduate School of Life Sciences, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai Miyagi 980-8577 Japan
Frontier Research Institute for Interdisciplinary Sciences, Tohoku University 6-3 Aramaki Aza-Aoba, Aoba-ku Sendai-shi Miyagi 980-8578 Japan.
Chem Sci. 2024 Aug 28;15(36):14625-34. doi: 10.1039/d4sc03145h.
Dysfunction of mitochondria is implicated in various diseases, including cancer and neurodegenerative disorders, but drug discovery targeting mitochondria and mitochondrial proteins has so far made limited progress. Targeted protein degradation (TPD) technologies represented by proteolysis targeting chimeras (PROTACs) are potentially applicable for this purpose, but most existing TPD approaches leverage the ubiquitin-proteasome system or lysosomes, which are absent in mitochondria, and TPD in mitochondria (mitoTPD) remains little explored. Herein, we describe the design and synthesis of a bifunctional molecule comprising TR79, an activator of the mitochondrial protease complex caseinolytic protease P (ClpP), linked to desthiobiotin. This compound successfully induced the degradation of monomeric streptavidin (mSA) and its fusion proteins localized to the mitochondrial matrix. Furthermore, in cells overexpressing mSA fused to short transmembrane protein 1 (mSA-STMP1), which enhances mitochondrial fission, our mitochondrial mSA degrader restored the mitochondrial morphology by reducing the level of mSA-STMP1. A preliminary structure-activity relationship study indicated that a longer linker length enhances the degradation activity towards mSA. These findings highlight the potential of mitoTPD as a tool for drug discovery targeting mitochondria and for research in mitochondrial biology, as well as the utility of mSA as a degradation tag for mitochondrial protein.
线粒体功能障碍与包括癌症和神经退行性疾病在内的多种疾病有关,但针对线粒体和线粒体蛋白的药物研发迄今为止进展有限。以蛋白酶靶向嵌合体(PROTACs)为代表的靶向蛋白降解(TPD)技术可能适用于此目的,但大多数现有的TPD方法利用的是线粒体中不存在的泛素-蛋白酶体系统或溶酶体,而线粒体中的TPD(mitoTPD)仍未得到充分探索。在此,我们描述了一种双功能分子的设计与合成,该分子由与脱硫生物素连接的线粒体蛋白酶复合物酪蛋白溶解蛋白酶P(ClpP)的激活剂TR79组成。该化合物成功诱导了单体链霉亲和素(mSA)及其定位于线粒体基质的融合蛋白的降解。此外,在过表达与短跨膜蛋白1融合的mSA(mSA-STMP1)的细胞中,mSA-STMP1可增强线粒体分裂,我们的线粒体mSA降解剂通过降低mSA-STMP1的水平恢复了线粒体形态。一项初步的构效关系研究表明,较长的连接子长度可增强对mSA的降解活性。这些发现突出了mitoTPD作为靶向线粒体药物研发工具和线粒体生物学研究工具的潜力,以及mSA作为线粒体蛋白降解标签的实用性。