Sun Gerald J, Arango-Argoty Gustavo, Doherty Gary J, Bikiel Damian E, Pavlovic Dejan, Chen Allen C, Stewart Ross A, Lai Zhongwu, Jacob Etai
Oncology Data Science, Oncology R&D, AstraZeneca, Waltham, MA, USA.
Late Development Oncology, Oncology R&D, AstraZeneca, Cambridge, UK.
iScience. 2024 Aug 2;27(9):110634. doi: 10.1016/j.isci.2024.110634. eCollection 2024 Sep 20.
System-level patient health signals, as captured by treatment-emergent adverse events (TEAEs), might contain correlates of immune checkpoint inhibitor (ICI) therapy response. Using all TEAEs and a novel machine learning modeling approach, we derived a composite signature predictive of, and potentially specific to, the response to the anti-PD-L1 ICI durvalumab in patients with non-small-cell lung cancer (NSCLC). We trained on data from the durvalumab arm and chemotherapy arm in the MYSTIC clinical trial and tested on data from four independent durvalumab-containing NSCLC trials using only the first 60 days' TEAEs. We directly compared our signature performance against that of three different definitions of immune-related adverse events. Only our signature was predictive and identified longer survivors in patients treated with durvalumab but not in patients treated with chemotherapy or placebo. It also identified durvalumab-treated long survivors with stable disease at their first RECIST evaluation and a set of PD-L1-negative long survivors.
治疗中出现的不良事件(TEAE)所捕捉到的系统层面患者健康信号,可能包含免疫检查点抑制剂(ICI)治疗反应的相关因素。利用所有TEAE和一种新颖的机器学习建模方法,我们得出了一种综合特征,可预测非小细胞肺癌(NSCLC)患者对抗PD-L1 ICI度伐利尤单抗的反应,并且可能具有特异性。我们在MYSTIC临床试验中来自度伐利尤单抗组和化疗组的数据上进行训练,并仅使用前60天的TEAE数据在四项独立的含度伐利尤单抗的NSCLC试验数据上进行测试。我们将我们的特征性能与免疫相关不良事件的三种不同定义的性能进行了直接比较。只有我们的特征具有预测性,并在接受度伐利尤单抗治疗的患者中识别出更长生存期的患者,但在接受化疗或安慰剂治疗的患者中未识别出。它还识别出在首次RECIST评估时疾病稳定的接受度伐利尤单抗治疗的长期存活者以及一组PD-L1阴性的长期存活者。