Li Ning, Hu Ya-Dong, Jiang Ye, Ling Li, Wang Chu-Han, Shao Jia-Min, Li Si-Bo, Di Wei-Ying
Department of Neurology, Affiliated Hospital of Hebei University, Baoding, Hebei, China.
Front Aging Neurosci. 2024 Aug 23;16:1404836. doi: 10.3389/fnagi.2024.1404836. eCollection 2024.
Lacunes, a characteristic feature of cerebral small vessel disease (CSVD), are critical public health concerns, especially in the aging population. Traditional neuroimaging techniques often fall short in early lacune detection, prompting the need for more precise predictive models.
In this retrospective study, 587 patients from the Neurology Department of the Affiliated Hospital of Hebei University who underwent cranial MRI were assessed. A nomogram for predicting lacune incidence was developed using LASSO regression and binary logistic regression analysis for variable selection. The nomogram's performance was quantitatively assessed using AUC-ROC, calibration plots, and decision curve analysis (DCA) in both training ( = 412) and testing ( = 175) cohorts.
Independent predictors identified included age, gender, history of stroke, carotid atherosclerosis, hypertension, creatinine, and homocysteine levels. The nomogram showed an AUC-ROC of 0.814 (95% CI: 0.791-0.870) for the training set and 0.805 (95% CI: 0.782-0.843) for the testing set. Calibration and DCA corroborated the model's clinical value.
This study introduces a clinically useful nomogram, derived from binary logistic regression, that significantly enhances the prediction of lacunes in patients undergoing brain MRI for various indications, potentially advancing early diagnosis and intervention. While promising, its retrospective design and single-center context are limitations that warrant further research, including multi-center validation.
腔隙性脑梗死是脑小血管病(CSVD)的一个特征性表现,是重要的公共卫生问题,在老年人群中尤为如此。传统的神经影像学技术在早期腔隙性脑梗死检测方面往往存在不足,因此需要更精确的预测模型。
在这项回顾性研究中,对河北大学附属医院神经内科的587例接受头颅MRI检查的患者进行了评估。使用LASSO回归和二元逻辑回归分析进行变量选择,建立了一个预测腔隙性脑梗死发生率的列线图。在训练队列(n = 412)和测试队列(n = 175)中,使用AUC-ROC、校准曲线和决策曲线分析(DCA)对列线图的性能进行了定量评估。
确定的独立预测因素包括年龄、性别、中风病史、颈动脉粥样硬化、高血压、肌酐和同型半胱氨酸水平。训练集的列线图AUC-ROC为0.814(95%CI:0.791-0.870),测试集为0.805(95%CI:0.782-0.843)。校准和DCA证实了该模型的临床价值。
本研究引入了一个从二元逻辑回归得出的具有临床实用性的列线图,该列线图显著提高了对因各种适应证接受脑部MRI检查患者腔隙性脑梗死的预测能力,有可能推动早期诊断和干预。虽然前景广阔,但其回顾性设计和单中心背景是局限性,需要进一步研究,包括多中心验证。