Suppr超能文献

预测模型中连续变量分类的新方法:提议与验证。

A new approach to categorising continuous variables in prediction models: Proposal and validation.

作者信息

Barrio Irantzu, Arostegui Inmaculada, Rodríguez-Álvarez María-Xosé, Quintana José-María

机构信息

1 Departamento de Matemática Aplicada, Estadística e Investigación Operativa, Universidad del País Vasco UPV/EHU, Leioa, Spain.

2 Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Galdakao, Spain.

出版信息

Stat Methods Med Res. 2017 Dec;26(6):2586-2602. doi: 10.1177/0962280215601873. Epub 2015 Sep 18.

Abstract

When developing prediction models for application in clinical practice, health practitioners usually categorise clinical variables that are continuous in nature. Although categorisation is not regarded as advisable from a statistical point of view, due to loss of information and power, it is a common practice in medical research. Consequently, providing researchers with a useful and valid categorisation method could be a relevant issue when developing prediction models. Without recommending categorisation of continuous predictors, our aim is to propose a valid way to do it whenever it is considered necessary by clinical researchers. This paper focuses on categorising a continuous predictor within a logistic regression model, in such a way that the best discriminative ability is obtained in terms of the highest area under the receiver operating characteristic curve (AUC). The proposed methodology is validated when the optimal cut points' location is known in theory or in practice. In addition, the proposed method is applied to a real data-set of patients with an exacerbation of chronic obstructive pulmonary disease, in the context of the IRYSS-COPD study where a clinical prediction rule for severe evolution was being developed. The clinical variable PCO was categorised in a univariable and a multivariable setting.

摘要

在开发用于临床实践的预测模型时,医疗从业者通常会对本质上为连续型的临床变量进行分类。尽管从统计学角度来看,分类并不被认为是可取的,因为会损失信息和效能,但它在医学研究中却是常见的做法。因此,在开发预测模型时,为研究人员提供一种有用且有效的分类方法可能是一个相关问题。在不建议对连续预测变量进行分类的情况下,我们的目标是提出一种有效的方法,以便在临床研究人员认为必要时进行分类。本文重点关注在逻辑回归模型中对连续预测变量进行分类,从而根据受试者工作特征曲线(AUC)下的最高面积获得最佳判别能力。当理论上或实践中知道最佳切点的位置时,对所提出的方法进行验证。此外,在所开展的IRYSS - COPD研究(正在制定严重病情进展的临床预测规则)背景下,将所提出的方法应用于慢性阻塞性肺疾病急性加重患者的真实数据集。临床变量PCO在单变量和多变量设置中进行了分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验