Suppr超能文献

术前CT显示的肿瘤轮廓不规则可预测肾细胞癌的预后:一项多机构研究。

Tumor contour irregularity on preoperative CT predicts prognosis in renal cell carcinoma: a multi-institutional study.

作者信息

Zhu Pingyi, Dai Chenchen, Xiong Ying, Qu Jianyi, Wang Ruiting, Yao Linpeng, Zhang Feng, Hou Jun, Zeng Mengsu, Guo Jianming, Wang Shuo, Chen Feng, Zhou Jianjun

机构信息

Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.

Shanghai Institute of Medical Imaging, Shanghai, China.

出版信息

EClinicalMedicine. 2024 Aug 16;75:102775. doi: 10.1016/j.eclinm.2024.102775. eCollection 2024 Sep.

Abstract

BACKGROUND

Radiology-based prognostic biomarkers play a crucial role in patient counseling, enhancing surveillance, and designing clinical trials effectively. This study aims to assess the predictive significance of preoperative CT-based tumor contour irregularity in determining clinical outcomes among patients with renal cell carcinoma (RCC).

METHODS

We conducted a retrospective multi-institutional review involving 2218 patients pathologically diagnosed with RCC. The training and internal validation sets included patients at Zhongshan Hospital between January 2009 and August 2019. The external test set comprised patients from the First Affiliated Hospital, Zhejiang University School of Medicine (January 2016 to January 2018), the Xiamen Branch of Zhongshan Hospital (November 2017 to June 2023), and the Cancer Imaging Archive. The contour irregularity degree (CID), quantified as the ratio of irregular cross-sections to the total tumor cross-sections, was analyzed for its prognostic relevance across different subgroups of RCC patients. A novel CID-based scoring system was developed, and its predictive efficacy was evaluated and compared with existing prognostic models.

FINDINGS

The CID exhibited significant discriminatory power in predicting overall survival (OS), recurrence-free survival (RFS), and disease-specific survival (DSS) among patients with RCC tumors measuring 3 cm or larger (all p < 0.001). Multivariate analyses confirmed the CID as an independent prognostic indicator. Notably, the CID augmented prognostic stratification among RCC patients within distinct risk subgroups delineated by SSIGN models and ISUP grades. The CID-based nomogram (C-Model) demonstrated robust predictive performance, with C-index values of 0.88 (95%CI: 0.84-0.92) in the training set, 0.92 (95%CI: 0.88-0.98) in the internal validation set, and 0.86 (95%CI: 0.81-0.90) in the external test set, surpassing existing prognostic models.

INTERPRETATION

Routine imaging-based assessment of the CID serves as an independent prognostic factor, offering incremental prognostic value to existing models in RCC patients with tumors measuring 3 cm or larger.

FUNDING

This study was funded by grants from National Natural Science Foundation of China; Shanghai Municipal Health Commission; China National Key R&D Program and Science and Technology Commission of Shanghai Municipality.

摘要

背景

基于放射学的预后生物标志物在患者咨询、加强监测以及有效设计临床试验方面发挥着关键作用。本研究旨在评估术前基于CT的肿瘤轮廓不规则性在确定肾细胞癌(RCC)患者临床结局中的预测意义。

方法

我们进行了一项回顾性多机构研究,纳入2218例经病理诊断为RCC的患者。训练集和内部验证集包括2009年1月至2019年8月在中山医院就诊的患者。外部测试集包括浙江大学医学院附属第一医院(2016年1月至2018年1月)、中山医院厦门分院(2017年11月至2023年6月)的患者以及癌症影像存档中的患者。将轮廓不规则度(CID)量化为不规则横截面与肿瘤总横截面的比值,分析其在不同RCC患者亚组中的预后相关性。开发了一种基于CID的新型评分系统,并评估其预测效能,与现有的预后模型进行比较。

结果

在肿瘤大小为3 cm或更大的RCC患者中,CID在预测总生存期(OS)、无复发生存期(RFS)和疾病特异性生存期(DSS)方面显示出显著的鉴别能力(所有p<0.001)。多变量分析证实CID是一个独立的预后指标。值得注意的是,CID在由SSIGN模型和ISUP分级划定的不同风险亚组的RCC患者中增强了预后分层。基于CID的列线图(C模型)显示出强大的预测性能,训练集中C指数值为0.88(95%CI:0.84 - 0.92),内部验证集中为0.92(95%CI:0.88 - 0.98),外部测试集中为0.86(95%CI:0.81 - 0.90),超过了现有的预后模型。

解读

基于常规影像的CID评估可作为独立的预后因素,为肿瘤大小为3 cm或更大的RCC患者的现有模型提供额外的预后价值。

资助

本研究由中国国家自然科学基金、上海市卫生健康委员会、国家重点研发计划以及上海市科学技术委员会资助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验