Department of BioSciences, Rice University.
PhD Program in Systems, Synthetic, and Physical Biology, Rice University.
J Vis Exp. 2024 Aug 23(210). doi: 10.3791/67204.
Many bacteria perform extracellular electron transfer (EET), whereby electrons are transferred from the cell to an extracellular terminal electron acceptor. This electron acceptor can be an electrode and electrons can be delivered indirectly via a redox-active mediator molecule. Here, we present a protocol to study mediated EET in Lactiplantibacillus plantarum, a probiotic lactic acid bacterium widely used in the food industry, using a bioelectrochemical system. We detail how to assemble a three-electrode, two-chambered bioelectrochemical system and provide guidance on characterizing EET in the presence of a soluble mediator using chronoamperometry and cyclic voltammetry techniques. We use representative data from 1,4-dihydroxy-2-naphthoic acid (DHNA)-mediated EET experiments with L. plantarum to demonstrate data analysis and interpretation. The techniques described in this protocol can open new opportunities for electro-fermentation and bioelectrocatalysis. Recent applications of this electrochemical technique with L. plantarum demonstrated an acceleration of metabolic flux towards producing fermentation end-products, which are critical flavor components in food fermentation. As such, this system has the potential to be further developed to alter flavors in food production or produce valuable chemicals.
许多细菌进行细胞外电子传递(EET),在此过程中,电子从细胞传递到细胞外的末端电子受体。这种电子受体可以是电极,电子可以通过氧化还原活性介体分子间接传递。在这里,我们使用生物电化学系统,介绍了一种研究植物乳杆菌(一种广泛应用于食品工业的益生菌乳酸菌)中介 EET 的方案。我们详细说明了如何组装三电极、双室生物电化学系统,并提供了使用计时安培法和循环伏安法技术在存在可溶性介体的情况下表征 EET 的指导。我们使用 1,4-二羟基-2-萘甲酸(DHNA)中介 EET 实验的代表性数据来演示数据分析和解释。本协议中描述的技术为电发酵和生物电化学开辟了新的机会。最近,该电化学技术在植物乳杆菌中的应用证明了代谢通量向发酵终产物的加速,发酵终产物是食品发酵中关键的风味成分。因此,该系统有可能进一步开发以改变食品生产中的风味或生产有价值的化学品。