Yao Yongbin, Wang Jingnan, Liu Qiang, Yu Can, Gao Zhan, Yuan Fangli, Wang Xi
Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China.
Tangshan Research Institute of Beijing Jiaotong University, Tangshan City, Hebei, Beijing, 100044, P. R. China.
Angew Chem Int Ed Engl. 2025 Jan 15;64(3):e202415295. doi: 10.1002/anie.202415295. Epub 2024 Nov 2.
Simultaneously enhancing selectivity and stability on supported propane dehydrogenation (PDH) catalysts remains a formidable challenge. Here, we report a combined static and dynamic strategy to address these issues synergistically. Firstly, we demonstrate a feasible sol-gel method for preparing atomically-dispersed Bi-decorated metal nanoparticle catalysts (MBi/AlO, M=Fe, Co, Ni, and Zn). In PDH testing, the total selectivity of by-products (CH and CH) significantly decreases to 4 % for CoBi catalysts due to the static Bi-doping, compared with 16 % for Co-supported catalysts. Secondly, to enhance catalytic stability, we introduce a dynamic trace CO co-feeding route. 10CoBi/AlO catalysts exhibit superior durability against coke formation for 330 hours in PDH under a 40 % CH atmosphere followed by pure CH conditions at 600 °C while maintaining propylene selectivity at 96 %. Notably, introducing trace CO leads to a remarkable 6-fold decrease in the deactivation rate constant (k). Multiple characterizations and density functional theory calculations reveal that charge transfer from atomically-distributed Bi to Co nanoparticles benefits lowering the energy of CH adsorption thereby suppressing by-products. Furthermore, the dynamic co-feeding of trace CO facilitates coke removal, suppressing catalyst deactivation. The static Bi-doping and dynamic trace CO co-feeding strategy contributes simultaneously to increased selectivity and stability on supported PDH catalysts.
同时提高负载型丙烷脱氢(PDH)催化剂的选择性和稳定性仍然是一项艰巨的挑战。在此,我们报告一种结合静态和动态的策略来协同解决这些问题。首先,我们展示了一种可行的溶胶 - 凝胶法来制备原子分散的铋修饰金属纳米颗粒催化剂(MBi/AlO,M = Fe、Co、Ni和Zn)。在PDH测试中,由于静态铋掺杂,CoBi催化剂的副产物(CH和CH)总选择性显著降低至4%,而Co负载型催化剂为16%。其次,为了提高催化稳定性,我们引入了动态微量CO共进料路线。10CoBi/AlO催化剂在600°C下40% CH气氛随后是纯CH条件下的PDH中,对积炭表现出优异的耐久性,长达330小时,同时保持丙烯选择性为96%。值得注意的是,引入微量CO导致失活速率常数(k)显著降低6倍。多种表征和密度泛函理论计算表明,从原子分布的Bi到Co纳米颗粒的电荷转移有利于降低CH吸附能,从而抑制副产物。此外,微量CO的动态共进料促进了积炭的去除,抑制了催化剂失活。静态铋掺杂和动态微量CO共进料策略同时有助于提高负载型PDH催化剂的选择性和稳定性。