文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

APOBEC 家族重塑透明细胞肾细胞癌的免疫微环境和治疗敏感性。

APOBEC family reshapes the immune microenvironment and therapy sensitivity in clear cell renal cell carcinoma.

机构信息

Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Department of Clinical Laboratory, Lishui Central Hospital, Lishui, Zhejiang, China.

出版信息

Clin Exp Med. 2024 Sep 9;24(1):212. doi: 10.1007/s10238-024-01465-2.


DOI:10.1007/s10238-024-01465-2
PMID:39249558
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11383847/
Abstract

Emerging evidence suggests that the APOBEC family is implicated in multiple cancers and might be utilized as a new target for cancer detection and treatment. However, the dysregulation and clinical implication of the APOBEC family in clear cell renal cell cancer (ccRCC) remain elusive. TCGA multiomics data facilitated a comprehensive exploration of the APOBEC family across cancers, including ccRCC. Remodeling analysis classified ccRCC patients into two distinct subgroups: APOBEC family pattern cancer subtype 1 (APCS1) and subtype 2 (APCS2). The study investigated differences in clinical parameters, tumor immune microenvironment, therapeutic responsiveness, and genomic mutation landscapes between these subtypes. An APOBEC family-related risk model was developed and validated for predicting ccRCC patient prognosis, demonstrating good sensitivity and specificity. Finally, the overview of APOBEC3B function was investigated in multiple cancers and verified in clinical samples. APCS1 and APCS2 demonstrated considerably distinct clinical features and biological processes in ccRCC. APCS1, an aggressive subtype, has advanced clinical stage and a poor prognosis. APCS1 exhibited an oncogenic and metabolically active phenotype. APCS1 also exhibited a greater tumor mutation load and immunocompromised condition, resulting in immunological dysfunction and immune checkpoint treatment resistance. The genomic copy number variation of APCS1, including arm gain and loss, was much more than that of APCS2, which may help explain the tired immune system. Furthermore, the two subtypes have distinct drug sensitivity patterns in clinical specimens and matching cell lines. Finally, we developed a predictive risk model based on subtype biomarkers that performed well for ccRCC patients and validated the clinical impact of APOBEC3B. Aberrant APOBEC family expression patterns might modify the tumor immune microenvironment by increasing the genome mutation frequency, thus inducing an immune-exhausted phenotype. APOBEC family-based molecular subtypes could strengthen the understanding of ccRCC characterization and guide clinical treatment. Targeting APOBEC3B may be regarded as a new therapeutic target for ccRCC.

摘要

新兴证据表明,APOBEC 家族与多种癌症有关,可能被用作癌症检测和治疗的新靶点。然而,APOBEC 家族在透明细胞肾细胞癌(ccRCC)中的失调和临床意义仍不清楚。TCGA 多组学数据促进了对癌症中 APOBEC 家族的全面研究,包括 ccRCC。重构分析将 ccRCC 患者分为两个不同的亚组:APOBEC 家族模式癌症亚型 1(APCS1)和亚型 2(APCS2)。本研究调查了这两个亚型之间临床参数、肿瘤免疫微环境、治疗反应和基因组突变景观的差异。开发并验证了一个基于 APOBEC 家族的风险模型,用于预测 ccRCC 患者的预后,该模型具有良好的敏感性和特异性。最后,研究了 APOBEC3B 功能在多种癌症中的概述,并在临床样本中进行了验证。APCS1 和 APCS2 在 ccRCC 中表现出明显不同的临床特征和生物学过程。APCS1 是一种侵袭性亚型,具有较晚期的临床阶段和较差的预后。APCS1 表现出致癌和代谢活跃的表型。APCS1 还表现出更高的肿瘤突变负荷和免疫抑制状态,导致免疫功能障碍和免疫检查点治疗耐药。APCS1 的基因组拷贝数变异,包括臂增益和损失,比 APCS2 多得多,这可能有助于解释疲惫的免疫系统。此外,这两种亚型在临床标本和匹配的细胞系中具有不同的药物敏感性模式。最后,我们基于亚型标志物开发了一个预测风险模型,该模型对 ccRCC 患者表现良好,并验证了 APOBEC3B 的临床影响。异常的 APOBEC 家族表达模式可能通过增加基因组突变频率来改变肿瘤免疫微环境,从而诱导免疫衰竭表型。基于 APOBEC 家族的分子亚型可以加强对 ccRCC 特征的理解,并指导临床治疗。靶向 APOBEC3B 可能被视为 ccRCC 的一种新的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/308e208997e9/10238_2024_1465_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/c461a9b10ae3/10238_2024_1465_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/831d1d67ef8a/10238_2024_1465_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/c17181c0912f/10238_2024_1465_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/c9b843bf0cf5/10238_2024_1465_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/d16ba443b753/10238_2024_1465_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/2fa2f16af4e1/10238_2024_1465_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/b5c0a0159a83/10238_2024_1465_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/4fa6973119aa/10238_2024_1465_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/384856869bee/10238_2024_1465_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/701e5e22187a/10238_2024_1465_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/308e208997e9/10238_2024_1465_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/c461a9b10ae3/10238_2024_1465_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/831d1d67ef8a/10238_2024_1465_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/c17181c0912f/10238_2024_1465_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/c9b843bf0cf5/10238_2024_1465_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/d16ba443b753/10238_2024_1465_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/2fa2f16af4e1/10238_2024_1465_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/b5c0a0159a83/10238_2024_1465_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/4fa6973119aa/10238_2024_1465_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/384856869bee/10238_2024_1465_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/701e5e22187a/10238_2024_1465_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bd/11383847/308e208997e9/10238_2024_1465_Fig11_HTML.jpg

相似文献

[1]
APOBEC family reshapes the immune microenvironment and therapy sensitivity in clear cell renal cell carcinoma.

Clin Exp Med. 2024-9-9

[2]
SPCS, a Novel Classifier System Based on Senescence Axis Regulators Reveals Tumor Microenvironment Heterogeneity and Guides Frontline Therapy for Clear Cell Renal Carcinoma.

Clin Genitourin Cancer. 2024-4

[3]
Integrated Multi-Omics Analysis Unveils Distinct Molecular Subtypes and a Robust Immune-Metabolic Prognostic Model in Clear Cell Renal Cell Carcinoma.

Int J Mol Sci. 2025-3-28

[4]
TUBA1C orchestrates the immunosuppressive tumor microenvironment and resistance to immune checkpoint blockade in clear cell renal cell carcinoma.

Front Immunol. 2024

[5]
A New Thinking: Deciphering the Aberrance and Clinical Implication of IGF Axis Regulation Pattern in Clear Cell Renal Cell Carcinoma.

Front Immunol. 2022

[6]
Deciphering the Role of Melatonin-Related Signatures in Tumor Immunity and the Prognosis of Clear Cell Renal Cell Carcinoma.

Oxid Med Cell Longev. 2023

[7]
Integrated analysis of immune-related gene subtype and immune index for immunotherapy in clear cell renal cell carcinoma.

Pathol Res Pract. 2021-9

[8]
MOICS, a novel classier deciphering immune heterogeneity and aid precise management of clear cell renal cell carcinoma at multiomics level.

Cancer Biol Ther. 2024-12-31

[9]
Comprehensive analysis of heat shock protein 110, 90, 70, 60 families and tumor immune microenvironment characterization in clear cell renal cell carcinoma.

Sci Rep. 2025-1-2

[10]
Bioinformatics screening of prognostic immune-related genes in renal clear cell carcinoma.

J Appl Genet. 2025-5

引用本文的文献

[1]
Ligand-receptor interactions combined with histopathology for improved prognostic modeling in HPV-negative head and neck squamous cell carcinoma.

NPJ Precis Oncol. 2025-2-28

本文引用的文献

[1]
Copper Death Inducer, FDX1, as a Prognostic Biomarker Reshaping Tumor Immunity in Clear Cell Renal Cell Carcinoma.

Cells. 2023-1-17

[2]
A new thinking: deciphering the aberrance and clinical implication of copper-death signatures in clear cell renal cell carcinoma.

Cell Biosci. 2022-12-29

[3]
A New Thinking: Deciphering the Aberrance and Clinical Implication of IGF Axis Regulation Pattern in Clear Cell Renal Cell Carcinoma.

Front Immunol. 2022

[4]
APOBEC Mutational Signature and Tumor Mutational Burden as Predictors of Clinical Outcomes and Treatment Response in Patients With Advanced Urothelial Cancer.

Front Oncol. 2022-3-7

[5]
SETD2 loss perturbs the kidney cancer epigenetic landscape to promote metastasis and engenders actionable dependencies on histone chaperone complexes.

Nat Cancer. 2022-2

[6]
Establishment of a Prognostic Prediction and Drug Selection Model for Patients with Clear Cell Renal Cell Carcinoma by Multiomics Data Analysis.

Oxid Med Cell Longev. 2022

[7]
Cancer statistics, 2022.

CA Cancer J Clin. 2022-1

[8]
Establishment of a prognosis Prediction Model Based on Pyroptosis-Related Signatures Associated With the Immune Microenvironment and Molecular Heterogeneity in Clear Cell Renal Cell Carcinoma.

Front Oncol. 2021-11-5

[9]
Effect of functional polymorphism on renal cell carcinoma is influenced by tumor necrosis factor-α and transcriptional repressor ETS1.

Am J Cancer Res. 2021-9-15

[10]
Analysis of Methylation-driven Genes in Pancreatic Ductal Adenocarcinoma for Predicting Prognosis.

J Cancer. 2021-9-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索