Suppr超能文献

SGFCCDA:用于环状 RNA 疾病关联预测的尺度图卷积网络和特征卷积。

SGFCCDA: Scale Graph Convolutional Networks and Feature Convolution for circRNA-Disease Association Prediction.

出版信息

IEEE J Biomed Health Inform. 2024 Nov;28(11):7006-7014. doi: 10.1109/JBHI.2024.3456478. Epub 2024 Nov 6.

Abstract

Circular RNAs (circRNAs) have emerged as a novel class of non-coding RNAs with regulatory roles in disease pathogenesis. Computational models aimed at predicting circRNA-disease associations offer valuable insights into disease mechanisms, thereby enabling the development of innovative diagnostic and therapeutic approaches while reducing the reliance on costly wet experiments. In this study, SGFCCDA is proposed for predicting potential circRNA-disease associations based on scale graph convolutional networks and feature convolution. Specifically, SGFCCDA integrates multiple measures of circRNA and disease similarity and combines known association information to construct a heterogeneous network. This network is then explored by scale graph convolutional networks to capture both topological and attribute information. Additionally, convolutional neural networks are employed to further learn the features and obtain higher-order feature representations containing richer information about nodes. The Hadamard product is utilized to effectively combine circRNA features with disease features, and a multilayer perceptron is applied to predict the association between each pair of circRNA and disease. Five-fold cross validation experiments conducted on the CircR2Disease dataset demonstrate the accurate prediction capabilities of SGFCCDA in identifying potential circRNA-disease associations. Furthermore, case studies provide further confirmation of SGFCCDA's ability to identify disease-associated circRNAs.

摘要

环状 RNA(circRNAs)作为一类新的非编码 RNA,在疾病发病机制中具有调节作用。旨在预测 circRNA-疾病关联的计算模型为疾病机制提供了有价值的见解,从而能够开发创新的诊断和治疗方法,同时减少对昂贵的湿实验的依赖。在这项研究中,提出了 SGFCCDA 基于尺度图卷积网络和特征卷积来预测潜在的 circRNA-疾病关联。具体来说,SGFCCDA 整合了 circRNA 和疾病相似性的多种度量标准,并结合已知的关联信息来构建一个异构网络。然后通过尺度图卷积网络来探索这个网络,以捕获拓扑和属性信息。此外,卷积神经网络被用来进一步学习特征,并获得更高阶的特征表示,其中包含更丰富的节点信息。利用 Hadamard 积有效地将 circRNA 特征与疾病特征相结合,并应用多层感知机来预测每对 circRNA 和疾病之间的关联。在 CircR2Disease 数据集上进行的五重交叉验证实验表明,SGFCCDA 具有准确预测潜在 circRNA-疾病关联的能力。此外,案例研究进一步证实了 SGFCCDA 识别与疾病相关的 circRNAs 的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验