Suppr超能文献

草酰乙酸氨酰化作用在植物病原真菌禾谷镰刀菌和尖孢镰刀菌的致病性中具有不同的作用。

Oxaloacetate anaplerosis differently contributes to pathogenicity in plant pathogenic fungi Fusarium graminearum and F. oxysporum.

机构信息

Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.

Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.

出版信息

PLoS Pathog. 2024 Sep 9;20(9):e1012544. doi: 10.1371/journal.ppat.1012544. eCollection 2024 Sep.

Abstract

Anaplerosis refers to enzymatic reactions or pathways replenishing metabolic intermediates in the tricarboxylic acid (TCA) cycle. Pyruvate carboxylase (PYC) plays an important anaplerotic role by catalyzing pyruvate carboxylation, forming oxaloacetate. Although PYC orthologs are well conserved in prokaryotes and eukaryotes, their pathobiological functions in filamentous pathogenic fungi have yet to be fully understood. Here, we delve into the molecular functions of the ortholog gene PYC1 in Fusarium graminearum and F. oxysporum, prominent fungal plant pathogens with distinct pathosystems, demonstrating variations in carbon metabolism for pathogenesis. Surprisingly, the PYC1 deletion mutant of F. oxysporum exhibited pleiotropic defects in hyphal growth, conidiation, and virulence, unlike F. graminearum, where PYC1 deletion did not significantly impact virulence. To further explore the species-specific effects of PYC1 deletion on pathogenicity, we conducted comprehensive metabolic profiling. Despite shared metabolic changes, distinct reprogramming in central carbon and nitrogen metabolism was identified. Specifically, alpha-ketoglutarate, a key link between the TCA cycle and amino acid metabolism, showed significant down-regulation exclusively in the PYC1 deletion mutant of F. oxysporum. The metabolic response associated with pathogenicity was notably characterized by S-methyl-5-thioadenosine and S-adenosyl-L-methionine. This research sheds light on how PYC1-mediated anaplerosis affects fungal metabolism and reveals species-specific variations, exemplified in F. graminearum and F. oxysporum.

摘要

氨甲酰磷酸合成途径是指补充三羧酸(TCA)循环中代谢中间产物的酶促反应或途径。丙酮酸羧化酶(PYC)通过催化丙酮酸羧化形成草酰乙酸,在氨甲酰磷酸合成途径中起着重要的作用。虽然 PYC 同源物在原核生物和真核生物中得到了很好的保守,但它们在丝状致病真菌中的病理生物学功能尚未得到充分理解。在这里,我们深入研究了禾谷镰刀菌和尖孢镰刀菌中同源基因 PYC1 的分子功能,这两种真菌都是具有不同病理系统的重要植物病原体,表现出不同的致病碳代谢。令人惊讶的是,与禾谷镰刀菌不同,尖孢镰刀菌的 PYC1 缺失突变体在菌丝生长、产孢和毒力方面表现出多种缺陷,而禾谷镰刀菌中 PYC1 缺失对毒力没有显著影响。为了进一步探索 PYC1 缺失对致病性的种特异性影响,我们进行了全面的代谢谱分析。尽管存在共同的代谢变化,但在中心碳和氮代谢中发现了明显的重编程。具体来说,三羧酸循环和氨基酸代谢之间的关键连接物α-酮戊二酸在尖孢镰刀菌的 PYC1 缺失突变体中表现出显著下调,而在禾谷镰刀菌中则没有。与致病性相关的代谢反应的一个显著特点是 S-甲基-5-硫代腺苷和 S-腺苷-L-甲硫氨酸。这项研究揭示了 PYC1 介导的氨甲酰磷酸合成途径如何影响真菌代谢,并展示了在禾谷镰刀菌和尖孢镰刀菌中存在的种特异性变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验