Suppr超能文献

通过一个经过实验参数化的数学模型揭示了在稳态造血过程中动态调整的细胞命运决定和对突变体入侵的恢复能力。

Dynamically adjusted cell fate decisions and resilience to mutant invasion during steady-state hematopoiesis revealed by an experimentally parameterized mathematical model.

机构信息

Department of Mathematics, University of California San Diego, La Jolla, CA 92093.

Department of Mathematics, University of California Irvine, Irvine, CA 92697.

出版信息

Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2321525121. doi: 10.1073/pnas.2321525121. Epub 2024 Sep 9.

Abstract

A major next step in hematopoietic stem cell (HSC) biology is to enhance our quantitative understanding of cellular and evolutionary dynamics involved in undisturbed hematopoiesis. Mathematical models have been and continue to be key in this respect, and are most powerful when parameterized experimentally and containing sufficient biological complexity. In this paper, we use data from label propagation experiments in mice to parameterize a mathematical model of hematopoiesis that includes homeostatic control mechanisms as well as clonal evolution. We find that nonlinear feedback control can drastically change the interpretation of kinetic estimates at homeostasis. This suggests that short-term HSC and multipotent progenitors can dynamically adjust to sustain themselves temporarily in the absence of long-term HSCs, even if they differentiate more often than they self-renew in undisturbed homeostasis. Additionally, the presence of feedback control in the model renders the system resilient against mutant invasion. Invasion barriers, however, can be overcome by a combination of age-related changes in stem cell differentiation and evolutionary niche construction dynamics based on a mutant-associated inflammatory environment. This helps us understand the evolution of e.g., or mutants, and how to potentially reduce mutant burden.

摘要

造血干细胞(HSC)生物学的下一个重要步骤是增强我们对未受干扰的造血过程中涉及的细胞和进化动态的定量理解。在这方面,数学模型一直并且将继续是关键,并且当它们经过实验参数化并包含足够的生物学复杂性时,它们最为强大。在本文中,我们使用来自小鼠标记传播实验的数据来参数化一个包含稳态控制机制和克隆进化的造血数学模型。我们发现,非线性反馈控制可以极大地改变稳态动力学估计的解释。这表明,短期 HSC 和多能祖细胞可以动态调整以在没有长期 HSC 的情况下暂时维持自身,即使它们在未受干扰的稳态中比自我更新更频繁地分化。此外,模型中的反馈控制使系统能够抵御突变体的入侵。然而,入侵障碍可以通过基于与突变相关的炎症环境的干细胞分化和进化小生境构建动态的年龄相关变化的组合来克服。这有助于我们理解例如,突变体的进化,以及如何潜在地降低突变体负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c03/11420203/55418db18365/pnas.2321525121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验