Suppr超能文献

基于海藻酸钠和壳聚糖的聚酰胺 56 改性纳米纤维膜用于高效捕获大肠杆菌:抗菌和细胞毒性研究。

Alginate and chitosan-based polyamide 56 modified nanofiber membrane for highly effective capture of Escherichia coli: Antibacterial and cytotoxicity studies.

机构信息

Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan.

Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan.

出版信息

Int J Biol Macromol. 2024 Nov;279(Pt 4):135464. doi: 10.1016/j.ijbiomac.2024.135464. Epub 2024 Sep 7.

Abstract

In recent years, microbial fermentation has become a sustainable alternative to traditional petrochemical processes for producing biomass nylon 56 (i.e., PA56). This study is centered on creating a highly efficient antibacterial nanofiber membrane using bio-nylon 56 as the main material. The membrane was fabricated via a multi-step process involving sodium alginate, chitosan, and poly(hexamethylene biguanide) (PHMB). The PA56 nanofiber was chemically modified by sequential coupling with alginate (AG) and chitosan (CS), introducing a significant number of functional groups (-COOH and -NH). This process resulted in the formation of PA56-AG and PA56-AG-CS nanofibers. Further modification with PHMB led to obtaining the PA56-AG-PHMB and PA56-AG-CS-PHMB antibacterial nanofiber membranes. The optimal preparation conditions for these membranes were determined, including the pH and concentration of AG, the molecular weight, pH, and concentration of CS, and the pH and concentration of PHMB. The PA56-based membranes demonstrated nearly 100 % antibacterial efficiency within a short time. However, the PA56-AG-PHMB membrane exhibited faster antibacterial rates and higher efficiency in repeated use compared to the PA56-AG-CS-PHMB membrane. The two-step coupling reaction in the preparation of PA56-AG-CS-PHMB may have reduced its surface accessibility to E. coli cells, resulting in slower bacterial attachment. Furthermore, the PA56-related membranes showed excellent biocompatibility, with a 100 % cell survival rate. Despite some limitations in reusability, biomass nylon PA56 stands out as an environmentally friendly material derived from renewable resources through microbial fermentation. It offers significant sustainability advantages over traditional petroleum-based nylons, as evidenced by the favorable cytotoxicity test results.

摘要

近年来,微生物发酵已成为生产生物质尼龙 56(即 PA56)的一种可持续的传统石油化工工艺替代方法。本研究的重点是利用生物尼龙 56 作为主要材料,制备一种高效的抗菌纳米纤维膜。该膜是通过多步过程制造的,涉及海藻酸钠、壳聚糖和聚六亚甲基双胍(PHMB)。PA56 纳米纤维通过与海藻酸钠(AG)和壳聚糖(CS)的顺序偶联进行化学改性,引入了大量的功能基团(-COOH 和 -NH)。这一过程导致了 PA56-AG 和 PA56-AG-CS 纳米纤维的形成。进一步用 PHMB 改性得到了 PA56-AG-PHMB 和 PA56-AG-CS-PHMB 抗菌纳米纤维膜。确定了这些膜的最佳制备条件,包括 AG 的 pH 和浓度、CS 的分子量、pH 和浓度以及 PHMB 的 pH 和浓度。基于 PA56 的膜在短时间内表现出近 100%的抗菌效率。然而,与 PA56-AG-CS-PHMB 膜相比,PA56-AG-PHMB 膜表现出更快的抗菌速度和更高的重复使用效率。PA56-AG-CS-PHMB 制备中的两步偶联反应可能降低了其表面对大肠杆菌细胞的可及性,导致细菌附着速度较慢。此外,PA56 相关膜表现出良好的生物相容性,细胞存活率达到 100%。尽管在重复使用方面存在一些限制,但生物质尼龙 PA56 作为一种源自可再生资源的微生物发酵的环保材料,具有显著的可持续性优势。与传统的石油基尼龙相比,它的细胞毒性测试结果更为有利。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验