Suppr超能文献

用于验证因果效应估计值的两步框架。

A Two-Step Framework for Validating Causal Effect Estimates.

机构信息

Department of Methodology and Statistics, Tilburg University, Tilburg, The Netherlands.

Department of Clinical Data Science, Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, The Netherlands.

出版信息

Pharmacoepidemiol Drug Saf. 2024 Sep;33(9):e5873. doi: 10.1002/pds.5873.

Abstract

BACKGROUND

Comparing causal effect estimates obtained using observational data to those obtained from the gold standard (i.e., randomized controlled trials [RCTs]) helps assess the validity of these estimates. However, comparisons are challenging due to differences between observational data and RCT generated data. The unknown treatment assignment mechanism in the observational data and varying sampling mechanisms between the RCT and the observational data can lead to confounding and sampling bias, respectively.

AIMS

The objective of this study is to propose a two-step framework to validate causal effect estimates obtained from observational data by adjusting for both mechanisms.

MATERIALS AND METHODS

An estimator of causal effects related to the two mechanisms is constructed. A two-step framework for comparing causal effect estimates is derived from the estimator. An R package RCTrep is developed to implement the framework in practice.

RESULTS

A simulation study is conducted to show that using our framework observational data can produce causal effect estimates similar to those of an RCT. A real-world application of the framework to validate treatment effects of adjuvant chemotherapy obtained from registry data is demonstrated.

CONCLUSION

This  study constructs a framework for comparing causal effect estimates between observational data and RCT data, facilitating the assessment of the validity of causal effect estimates obtained from observational data.

摘要

背景

将观察性数据中获得的因果效应估计值与黄金标准(即随机对照试验 [RCT])获得的估计值进行比较,有助于评估这些估计值的有效性。然而,由于观察性数据和 RCT 生成的数据之间存在差异,因此比较具有挑战性。观察性数据中未知的治疗分配机制和 RCT 与观察性数据之间不同的抽样机制分别会导致混杂和抽样偏差。

目的

本研究的目的是提出一种两步框架,通过调整这两种机制来验证从观察性数据中获得的因果效应估计值。

材料和方法

构建了与两种机制相关的因果效应估计量。从估计量中推导出用于比较因果效应估计值的两步框架。开发了一个 R 包 RCTrep 来在实践中实现该框架。

结果

进行了一项模拟研究,以表明使用我们的框架,观察性数据可以产生类似于 RCT 的因果效应估计值。展示了该框架在验证来自登记数据的辅助化疗治疗效果的实际应用。

结论

本研究构建了一个比较观察性数据和 RCT 数据中因果效应估计值的框架,有助于评估从观察性数据中获得的因果效应估计值的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验