Suppr超能文献

使用倾向评分和观察数据估计随机对照试验的可推广性偏差。

The use of propensity scores and observational data to estimate randomized controlled trial generalizability bias.

机构信息

Quantum Health, Columbus, OH 43235, U.S.A.

出版信息

Stat Med. 2013 Sep 10;32(20):3552-68. doi: 10.1002/sim.5802. Epub 2013 Apr 1.

Abstract

Although randomized controlled trials are considered the 'gold standard' for clinical studies, the use of exclusion criteria may impact the external validity of the results. It is unknown whether estimators of effect size are biased by excluding a portion of the target population from enrollment. We propose to use observational data to estimate the bias due to enrollment restrictions, which we term generalizability bias. In this paper, we introduce a class of estimators for the generalizability bias and use simulation to study its properties in the presence of non-constant treatment effects. We find the surprising result that our estimators can be unbiased for the true generalizability bias even when all potentially confounding variables are not measured. In addition, our proposed doubly robust estimator performs well even for mis-specified models.

摘要

虽然随机对照试验被认为是临床研究的“金标准”,但排除标准的使用可能会影响结果的外部有效性。目前尚不清楚排除目标人群的一部分是否会影响效应大小估计值。我们建议使用观察数据来估计由于纳入限制而产生的偏差,我们称之为可推广性偏差。在本文中,我们提出了一类用于可推广性偏差的估计量,并通过模拟研究了在治疗效果非常数的情况下其性质。我们发现了一个令人惊讶的结果,即使没有测量所有潜在的混杂变量,我们的估计量也可以对真实的可推广性偏差进行无偏估计。此外,我们提出的双重稳健估计量即使在模型指定不当的情况下也能很好地发挥作用。

相似文献

1
The use of propensity scores and observational data to estimate randomized controlled trial generalizability bias.
Stat Med. 2013 Sep 10;32(20):3552-68. doi: 10.1002/sim.5802. Epub 2013 Apr 1.
2
Model misspecification and robustness in causal inference: comparing matching with doubly robust estimation.
Stat Med. 2012 Jul 10;31(15):1572-81. doi: 10.1002/sim.4496. Epub 2012 Feb 23.
4
Improving causal inference with a doubly robust estimator that combines propensity score stratification and weighting.
J Eval Clin Pract. 2017 Aug;23(4):697-702. doi: 10.1111/jep.12714. Epub 2017 Jan 24.
6
On regression adjustment for the propensity score.
Stat Med. 2014 Oct 15;33(23):4053-72. doi: 10.1002/sim.6207. Epub 2014 May 14.
7
Conditional cross-design synthesis estimators for generalizability in Medicaid.
Biometrics. 2023 Dec;79(4):3859-3872. doi: 10.1111/biom.13863. Epub 2023 May 1.
8
Model misspecification and bias for inverse probability weighting estimators of average causal effects.
Biom J. 2023 Feb;65(2):e2100118. doi: 10.1002/bimj.202100118. Epub 2022 Aug 31.
9
Doubly robust estimators of causal exposure effects with missing data in the outcome, exposure or a confounder.
Stat Med. 2012 Dec 30;31(30):4382-400. doi: 10.1002/sim.5643. Epub 2012 Oct 22.
10
Comparison of the ability of double-robust estimators to correct bias in propensity score matching analysis. A Monte Carlo simulation study.
Pharmacoepidemiol Drug Saf. 2017 Dec;26(12):1513-1519. doi: 10.1002/pds.4325. Epub 2017 Oct 6.

引用本文的文献

2
Target validity: Bringing treatment of external validity in line with internal validity.
Curr Epidemiol Rep. 2020 Sep;7(3):117-124. doi: 10.1007/s40471-020-00239-0. Epub 2020 Jun 30.
5
An outcome model approach to transporting a randomized controlled trial results to a target population.
J Am Med Inform Assoc. 2019 May 1;26(5):429-437. doi: 10.1093/jamia/ocy188.
7
Generalizability of randomized trial results to target populations: Design and analysis possibilities.
Res Soc Work Pract. 2018 Jul;28(5):532-537. doi: 10.1177/1049731517720730. Epub 2017 Jul 27.
8
The "RCT augmentation": a novel simulation method to add patient heterogeneity into phase III trials.
BMC Med Res Methodol. 2018 Jul 6;18(1):75. doi: 10.1186/s12874-018-0534-6.
9
The representativeness of eligible patients in type 2 diabetes trials: a case study using GIST 2.0.
J Am Med Inform Assoc. 2018 Mar 1;25(3):239-247. doi: 10.1093/jamia/ocx091.
10
GIST 2.0: A scalable multi-trait metric for quantifying population representativeness of individual clinical studies.
J Biomed Inform. 2016 Oct;63:325-336. doi: 10.1016/j.jbi.2016.09.003. Epub 2016 Sep 4.

本文引用的文献

1
Estimating treatment effect via simple cross design synthesis.
Stat Med. 2011 Nov 10;30(25):2986-3009. doi: 10.1002/sim.4339. Epub 2011 Sep 4.
2
An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies.
Multivariate Behav Res. 2011 May;46(3):399-424. doi: 10.1080/00273171.2011.568786. Epub 2011 Jun 8.
3
Propensity score-based sensitivity analysis method for uncontrolled confounding.
Am J Epidemiol. 2011 Aug 1;174(3):345-53. doi: 10.1093/aje/kwr096. Epub 2011 Jun 9.
6
External validity of randomised controlled trials in asthma: to whom do the results of the trials apply?
Thorax. 2007 Mar;62(3):219-23. doi: 10.1136/thx.2006.066837. Epub 2006 Nov 14.
8
External validity of randomised controlled trials: "to whom do the results of this trial apply?".
Lancet. 2005;365(9453):82-93. doi: 10.1016/S0140-6736(04)17670-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验