Extreme Light Infrastructure ERIC, Za Radnicí 835, Dolní Břežany 252 41, Czech Republic.
Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 121 16, Czech Republic.
J Phys Chem B. 2024 Sep 26;128(38):9262-9273. doi: 10.1021/acs.jpcb.4c03003. Epub 2024 Sep 9.
Protein-protein interactions, controlling protein aggregation in the solution phase, are crucial for the formulation of protein therapeutics and the use of proteins in diagnostic applications. Additives in the solution phase are factors that may enhance the protein's conformational stability or induce crystallization. Protein-PEG interactions do not always stabilize the native protein structure. Structural information is needed to validate excipients for protein stabilization in the development of protein therapeutics or use proteins in diagnostic assays. The present study investigates the impact of polyethylene glycol (PEG) molecular weight and concentration on the spatial structure of human hemoglobin (Hb) at neutral pH. Small-angle X-ray scattering (SAXS) in combination with size-exclusion chromatography is employed to characterize the Hb structure in solution without and with the addition of PEG. Our results evidence that human hemoglobin maintains a tetrameric conformation at neutral pH. The dummy atom model, reconstructed from the SAXS data, aligns closely with the known crystallographic structure of hemoglobin (Hb) from the Protein Data Bank. We established that the addition of short-chain PEG600, at concentrations of up to 10% (w/v), acts as a stabilizer for hemoglobin, preserving its spatial structure without significant alterations. By contrast, 5% (w/v) PEG with higher molecular weights of 2000 and 4000 leads to a slight reduction in the maximum particle dimension (), while the radius of gyration () remains essentially unchanged. This implies a reduced hydration shell around the protein due to the dehydrating effect of longer PEG chains. At a concentration of 10% (w/v), PEG2000 interacts with Hb to form a complex that does not distort the protein's spatial configuration. The obtained results provide a deeper understanding of PEG's influence on the Hb structure in solution and broader knowledge regarding protein-PEG interactions.
蛋白质-蛋白质相互作用控制溶液相中蛋白质的聚集,对于蛋白质治疗药物的配方和蛋白质在诊断应用中的使用至关重要。溶液相中的添加剂是可能增强蛋白质构象稳定性或诱导结晶的因素。蛋白质-聚乙二醇相互作用并不总是稳定天然蛋白质结构。在蛋白质治疗药物的开发或蛋白质在诊断测定中的使用中,需要结构信息来验证赋形剂对蛋白质稳定性的作用。本研究调查了聚乙二醇(PEG)分子量和浓度对中性 pH 下人类血红蛋白(Hb)空间结构的影响。小角 X 射线散射(SAXS)与尺寸排阻色谱相结合,用于在不添加和添加 PEG 的情况下表征溶液中 Hb 的结构。我们的结果表明,人类血红蛋白在中性 pH 下保持四聚体构象。从 SAXS 数据重建的虚拟原子模型与蛋白质数据库中已知的血红蛋白(Hb)晶体结构非常吻合。我们确定,在高达 10%(w/v)的浓度下添加短链 PEG600 可作为血红蛋白的稳定剂,在不显著改变其空间结构的情况下保存其空间结构。相比之下,分子量较高的 2000 和 4000 的 5%(w/v)PEG 会略微降低最大粒子尺寸(),而回转半径()基本保持不变。这意味着由于较长 PEG 链的脱水作用,蛋白质周围的水合壳减少。在 10%(w/v)的浓度下,PEG2000 与 Hb 相互作用形成不扭曲蛋白质空间构象的复合物。所得结果提供了对 PEG 对溶液中 Hb 结构影响的更深入理解,并更广泛地了解蛋白质-PEG 相互作用。