Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia.
Biomacromolecules. 2010 Dec 13;11(12):3504-10. doi: 10.1021/bm100999a. Epub 2010 Nov 4.
Protein conjugation with polyethylene glycol (PEG) is a valuable means for improving stability, solubility, and bioavailability of pharmaceutical proteins. Using human galectin-2 (hGal-2) and 5 kDa PEG as a model system we first produced a PEG-hGal-2 conjugate exclusively at the Cys75 residue, resulting in two monosubstituted subunits per hGal-2 homodimer. Small angle X-ray and neutron scattering (SAXS and SANS) were combined to provide complementary structural information about the PEG-hGal-2 conjugate, wherein signal generation in SAXS depends mainly on the protein while SANS data presents signals from both the protein and PEG moieties. SAXS data gave a constant radius of gyration (R(g) = 21.5 Å) for the conjugate at different concentrations and provided no evidence for an alteration of homodimeric structure or hGal-2 ellipsoidal shape upon PEGylation. In contrast, SANS data revealed a concentration dependence of R(g) for the conjugate, with the value decreasing from 31.5 Å at 2 mg/mL to 26 Å at 14 mg/mL (based on hGal-2 concentration). Scattering data have been successfully described by the model of the ellipsoidal homogeneous core (hGal-2) attached with polymer chains (PEG) at the surface. Evidently, the PEG conformation of the conjugate strongly depends on conjugate concentration and PEG's radius of gyration decreases from 24.5 to 15 Å. An excluded volume effect, arising from steric clashes between PEG molecules at high concentration, was quantified by estimating the second virial coefficient, A(2), of PEGylated hGal-2 from the SANS data. A positive value of A(2) (6.0 ± 0.4 × 10(-4) cm(3) mol g(-2)) indicates repulsive interactions between molecules, which are expected to protect the PEGylated protein against aggregation.
蛋白质与聚乙二醇(PEG)的缀合是提高药物蛋白稳定性、溶解性和生物利用度的有效手段。我们以人半乳糖凝集素-2(hGal-2)和 5 kDa PEG 为模型系统,首次在 Cys75 残基上将 PEG 与 hGal-2 进行缀合,结果每个 hGal-2 同源二聚体上只有一个单取代亚基。小角 X 射线和中子散射(SAXS 和 SANS)相结合,为 PEG-hGal-2 缀合物提供了互补的结构信息,其中 SAXS 的信号主要来源于蛋白质,而 SANS 数据则同时包含蛋白质和 PEG 部分的信号。SAXS 数据在不同浓度下给出了缀合物的恒定回转半径(R(g) = 21.5 Å),没有证据表明 hGal-2 同源二聚体结构或 hGal-2 椭球形状在 PEG 化后发生变化。相比之下,SANS 数据显示,缀合物的 R(g) 随浓度而变化,从 2 mg/mL 时的 31.5 Å 降低到 14 mg/mL 时的 26 Å(基于 hGal-2 浓度)。散射数据已成功地用附在表面上的聚合物链(PEG)的椭球均一核(hGal-2)模型来描述。显然,缀合物的 PEG 构象强烈依赖于缀合物的浓度,PEG 的回转半径从 24.5 降低到 15 Å。由于高浓度下 PEG 分子之间的空间位阻冲突,产生了排斥体积效应,我们从 SANS 数据中估算出了 PEG 化 hGal-2 的第二维里系数 A(2)。A(2)的正值(6.0 ± 0.4 × 10(-4) cm(3) mol g(-2))表明分子之间存在排斥相互作用,这有望保护 PEG 化蛋白免于聚集。