Oliver Brant J, Melmed Gil Y, Siegel Corey A, Kennedy Alice M, Testaverde James, Oberai Ridhima, Alandra Weaver S, Almario Christopher
Department of Community & Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
Office of Care Experience, Value Institute, Dartmouth Health, Lebanon, NH, USA.
Perm J. 2024 Sep 16;28(3):234-244. doi: 10.7812/TPP/24.024. Epub 2024 Sep 10.
Cost is a key outcome in quality and value, but it is often difficult to estimate reliably and efficiently for use in real-time improvement efforts. We describe a method using patient-reported outcomes (PROs), Markov modeling, and statistical process control (SPC) analytics in a real-time cost-estimation prototype designed to assess cost differences between usual care and improvement conditions in a national multicenter improvement collaborative-the IBD Qorus Learning Health System (LHS).
The IBD Qorus Learning Health System (LHS) collects PRO data, including emergency department utilization and hospitalizations from patients prior to their clinical visits. This data is aggregated monthly at center and collaborative levels, visualized using Statistical Process Control (SPC) analytics, and used to inform improvement efforts. A Markov model was developed by Almario et al to estimate annualized per patient cost differences between usual care (baseline) and improvement (intervention) time periods and then replicated at monthly intervals. We then applied moving average SPC analyses to visualize monthly iterative cost estimations and assess the variation and statistical reliability of these estimates over time.
We have developed a real-time Markov-informed SPC visualization prototype which uses PRO data to analyze and monitor monthly annualized per patient cost savings estimations over time for the IBD Qorus LHS. Validation of this prototype using claims data is currently underway.
This new approach using PRO data and hybrid Markov-SPC analysis can analyze and visualize near real-time estimates of cost differences over time. Pending successful validation against a claims data standard, this approach could more comprehensively inform improvement, advocacy, and strategic planning efforts.
成本是质量和价值的关键结果,但在实时改进工作中,往往难以可靠且高效地进行估算。我们描述了一种方法,该方法在一个实时成本估算原型中使用患者报告结局(PROs)、马尔可夫建模和统计过程控制(SPC)分析,旨在评估全国多中心改进协作项目——炎症性肠病Qorus学习健康系统(LHS)中常规护理与改进条件之间的成本差异。
炎症性肠病Qorus学习健康系统(LHS)收集PRO数据,包括患者临床就诊前的急诊科利用率和住院情况。这些数据每月在中心和协作层面进行汇总,使用统计过程控制(SPC)分析进行可视化,并用于指导改进工作。Almario等人开发了一个马尔可夫模型,以估计常规护理(基线)和改进(干预)时间段之间每位患者的年化成本差异,然后按月重复。然后,我们应用移动平均SPC分析来可视化每月的迭代成本估算,并评估这些估算随时间的变化和统计可靠性。
我们开发了一个实时马尔可夫知情的SPC可视化原型,该原型使用PRO数据来分析和监测炎症性肠病Qorus LHS随时间推移每位患者每月的年化成本节约估算。目前正在使用索赔数据对该原型进行验证。
这种使用PRO数据和混合马尔可夫 - SPC分析的新方法可以分析并可视化随时间变化的成本差异的近实时估算。在根据索赔数据标准成功验证之前,这种方法可以更全面地为改进、宣传和战略规划工作提供信息。