Suppr超能文献

医学决策中的马尔可夫模型:实用指南。

Markov models in medical decision making: a practical guide.

作者信息

Sonnenberg F A, Beck J R

机构信息

Department of Medicine, UMDNJ Robert Wood Johnson Medical School, New Brunswick 08903.

出版信息

Med Decis Making. 1993 Oct-Dec;13(4):322-38. doi: 10.1177/0272989X9301300409.

Abstract

Markov models are useful when a decision problem involves risk that is continuous over time, when the timing of events is important, and when important events may happen more than once. Representing such clinical settings with conventional decision trees is difficult and may require unrealistic simplifying assumptions. Markov models assume that a patient is always in one of a finite number of discrete health states, called Markov states. All events are represented as transitions from one state to another. A Markov model may be evaluated by matrix algebra, as a cohort simulation, or as a Monte Carlo simulation. A newer representation of Markov models, the Markov-cycle tree, uses a tree representation of clinical events and may be evaluated either as a cohort simulation or as a Monte Carlo simulation. The ability of the Markov model to represent repetitive events and the time dependence of both probabilities and utilities allows for more accurate representation of clinical settings that involve these issues.

摘要

当决策问题涉及随时间连续的风险、事件的时间安排很重要以及重要事件可能不止发生一次时,马尔可夫模型就很有用。用传统决策树来表示此类临床情况很困难,可能需要不切实际的简化假设。马尔可夫模型假定患者始终处于有限数量的离散健康状态之一,这些状态称为马尔可夫状态。所有事件都表示为从一个状态到另一个状态的转变。马尔可夫模型可以通过矩阵代数、队列模拟或蒙特卡罗模拟进行评估。马尔可夫模型的一种较新表示形式,即马尔可夫循环树,使用临床事件的树状表示形式,可以通过队列模拟或蒙特卡罗模拟进行评估。马尔可夫模型表示重复事件的能力以及概率和效用的时间依赖性,使得能够更准确地表示涉及这些问题的临床情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验