Suppr超能文献

基于电子病历的脊髓损伤康复方案决策的对比实验研究

The comparative experimental study of rehabilitation program decision for spinal cord injury based on electronic medical records.

作者信息

Qie Botao, Guo Xin, Chen Wei, Yu Suiran, Wang Zhengtao

机构信息

School of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin, 300401, China.

Control Engineering Technology Innovation Center of Hebei Province, Hebei University of Technology, Tianjin, 300401, China.

出版信息

Heliyon. 2024 Aug 13;10(16):e36121. doi: 10.1016/j.heliyon.2024.e36121. eCollection 2024 Aug 30.

Abstract

OBJECTIVE

Electronic medical records (EMRs) contain patients' medical and health information. The Utilization of EMRs for assisted diagnosis is of significant importance for the rehabilitation of spinal cord injury (SCI) patients. Therefore, this study proposes a decision-making model for rehabilitation programs of SCI patients based on EMRs.

METHODS

First, an Electronic Medical Records (EMR) dataset comprising 1252 Spinal Cord Injury (SCI) patients was constructed, and data preprocessing was completed. Second, the Random Forest (RF) feature extraction algorithm was utilized to select case features with high contribution levels. Then, to address the imbalance issue in EMRs, a multi-label learning framework based on the improved MLSMOTE was adopted. Finally, seven multi-label classification models were employed to predict patients' physical therapy (PT) prescriptions.

RESULTS

The proposed improved MLSMOTE multi-label learning framework can solve the problem of class imbalance. Compared with the other six models, the CC model has improved significantly in many metrics. Its hamming loss and ranking loss were 0.1388 and 0.2467, and precision, recall, and F1-score were 83.33 %, 81.20 %, and 79.82 % respectively.

CONCLUSIONS

The improved MLSMOTE multi-label learning framework proposed in this study can make full use of the information in EMRs and effectively improve the decision-making accuracy of rehabilitation treatment programs.

摘要

目的

电子病历(EMR)包含患者的医疗和健康信息。利用电子病历进行辅助诊断对脊髓损伤(SCI)患者的康复具有重要意义。因此,本研究提出了一种基于电子病历的脊髓损伤患者康复计划决策模型。

方法

首先,构建了一个包含1252例脊髓损伤(SCI)患者的电子病历(EMR)数据集,并完成了数据预处理。其次,利用随机森林(RF)特征提取算法选择贡献度高的病例特征。然后,为了解决电子病历中的不平衡问题,采用了基于改进的MLSMOTE的多标签学习框架。最后,使用七个多标签分类模型来预测患者的物理治疗(PT)处方。

结果

所提出的改进的MLSMOTE多标签学习框架可以解决类不平衡问题。与其他六个模型相比,CC模型在许多指标上有显著改进。其汉明损失和排序损失分别为0.1388和0.2467,精确率、召回率和F1分数分别为83.33%、81.20%和79.82%。

结论

本研究提出的改进的MLSMOTE多标签学习框架可以充分利用电子病历中的信息,有效提高康复治疗方案的决策准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b21/11381630/4b36c1c87cfd/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验