Liufu Mengzhan, Leveroni Zachary M, Shridhar Sameera, Zhou Nan, Yu Jai Y
bioRxiv. 2024 Aug 26:2024.08.24.609522. doi: 10.1101/2024.08.24.609522.
Closed-loop, phase-specific neurostimulation is a powerful method to modulate ongoing brain activity for clinical and research applications. Phase-specific stimulation relies on estimating the phase of an ongoing oscillation in real time and issuing a control command at a target phase. Phase detection algorithms based on Fast Fourier transform (FFT) are widely used due to their computational efficiency and robustness. However, it is unclear how algorithm performance depends on the spectral properties of the input signal and how algorithm parameters can be optimized. We used offline simulation to evaluate the performance of three algorithms (endpoint-corrected Hilbert Transform, Hilbert Transform and phase mapping) on three rhythmic biological signals with distinct spectral properties (rodent hippocampal theta potential, human EEG alpha and human essential tremor). First, we found that algorithm performance was more strongly influenced by signal amplitude and frequency variation compared with signal to noise ratio. Second, our simulations showed that the size of the data window for phase estimation was critical for the performance of FFT-based algorithms, where the optimal data window corresponds to the period of the oscillation. We validated this prediction with real time phase detection of hippocampal theta oscillations in freely behaving rats performing spatial navigation. Our findings define the relationship between signal properties and algorithm performance and provide a convenient method for optimizing FFT-based phase detection algorithms.
闭环、特定相位神经刺激是一种用于临床和研究应用中调节大脑持续活动的强大方法。特定相位刺激依赖于实时估计正在进行的振荡的相位,并在目标相位发出控制命令。基于快速傅里叶变换(FFT)的相位检测算法因其计算效率和稳健性而被广泛使用。然而,尚不清楚算法性能如何依赖于输入信号的频谱特性以及算法参数如何优化。我们使用离线模拟来评估三种算法(端点校正希尔伯特变换、希尔伯特变换和相位映射)在具有不同频谱特性的三种节律性生物信号(啮齿动物海马体θ电位、人类脑电图α波和人类特发性震颤)上的性能。首先,我们发现与信噪比相比,算法性能受信号幅度和频率变化的影响更大。其次,我们的模拟表明,用于相位估计的数据窗口大小对于基于FFT的算法的性能至关重要,其中最佳数据窗口对应于振荡周期。我们通过对执行空间导航的自由行为大鼠的海马体θ振荡进行实时相位检测来验证这一预测。我们的研究结果定义了信号特性与算法性能之间的关系,并提供了一种优化基于FFT的相位检测算法的简便方法。