Fuchs Johannes, Frings Alexander, Heinle Maria-Viktoria, Keim Daniel A, Di Bartolomeo Sara
IEEE Trans Vis Comput Graph. 2025 Jan;31(1):1039-1049. doi: 10.1109/TVCG.2024.3456312. Epub 2024 Nov 25.
Visualizing relational data is crucial for understanding complex connections between entities in social networks, political affiliations, or biological interactions. Well-known representations like node-link diagrams and adjacency matrices offer valuable insights, but their effectiveness relies on the ability to identify patterns in the underlying topological structure. Reordering strategies and layout algorithms play a vital role in the visualization process since the arrangement of nodes, edges, or cells influences the visibility of these patterns. The BioFabric visualization combines elements of node-link diagrams and adjacency matrices, leveraging the strengths of both, the visual clarity of node-link diagrams and the tabular organization of adjacency matrices. A unique characteristic of BioFabric is the possibility to reorder nodes and edges separately. This raises the question of which combination of layout algorithms best reveals certain patterns. In this paper, we discuss patterns and anti-patterns in BioFabric, such as staircases or escalators, relate them to already established patterns, and propose metrics to evaluate their quality. Based on these quality metrics, we compared combinations of well-established reordering techniques applied to BioFabric with a well-known benchmark data set. Our experiments indicate that the edge order has a stronger influence on revealing patterns than the node layout. The results show that the best combination for revealing staircases is a barycentric node layout, together with an edge order based on node indices and length. Our research contributes a first building block for many promising future research directions, which we also share and discuss. A free copy of this paper and all supplemental materials are available at https://osf.io/9mt8r/?view_only=b7t0dfbe550e3404f83059afdc60184c6.
可视化关系数据对于理解社交网络、政治归属或生物相互作用中实体之间的复杂联系至关重要。诸如节点链接图和邻接矩阵等知名表示法提供了有价值的见解,但其有效性依赖于识别底层拓扑结构中模式的能力。重排策略和布局算法在可视化过程中起着至关重要的作用,因为节点、边或单元格的排列会影响这些模式的可见性。生物织物可视化结合了节点链接图和邻接矩阵的元素,利用了两者的优势,即节点链接图的视觉清晰度和邻接矩阵的表格组织形式。生物织物的一个独特特征是可以分别对节点和边进行重排。这就引出了一个问题,即哪种布局算法的组合能最好地揭示某些模式。在本文中,我们讨论了生物织物中的模式和反模式,如楼梯或自动扶梯,将它们与已确立的模式相关联,并提出评估其质量的指标。基于这些质量指标,我们将应用于生物织物的成熟重排技术组合与一个知名基准数据集进行了比较。我们的实验表明,边的顺序对揭示模式的影响比节点布局更强。结果表明,揭示楼梯模式的最佳组合是重心节点布局,以及基于节点索引和长度的边顺序。我们的研究为许多有前景的未来研究方向贡献了第一个构建模块,我们也对其进行了分享和讨论。本文的免费副本以及所有补充材料可在https://osf.io/9mt8r/?view_only=b7t0dfbe550e3404f83059afdc60184c6获取。