Suppr超能文献

通过可排序节点链接布局提高图簇的视觉显著性

Improved Visual Saliency of Graph Clusters with Orderable Node-Link Layouts.

作者信息

Al-Naami Nora, Medoc Nicolas, Magnani Matteo, Ghoniem Mohammad

出版信息

IEEE Trans Vis Comput Graph. 2025 Jan;31(1):1028-1038. doi: 10.1109/TVCG.2024.3456167. Epub 2024 Nov 25.

Abstract

Graphs are often used to model relationships between entities. The identification and visualization of clusters in graphs enable insight discovery in many application areas, such as life sciences and social sciences. Force-directed graph layouts promote the visual saliency of clusters, as they bring adjacent nodes closer together, and push non-adjacent nodes apart. At the same time, matrices can effectively show clusters when a suitable row/column ordering is applied, but are less appealing to untrained users not providing an intuitive node-link metaphor. It is thus worth exploring layouts combining the strengths of the node-link metaphor and node ordering. In this work, we study the impact of node ordering on the visual saliency of clusters in orderable node-link diagrams, namely radial diagrams, arc diagrams and symmetric arc diagrams. Through a crowdsourced controlled experiment, we show that users can count clusters consistently more accurately, and to a large extent faster, with orderable node-link diagrams than with three state-of-the art force-directed layout algorithms, i.e., 'Linlog', 'Backbone' and 'sfdp'. The measured advantage is greater in case of low cluster separability and/or low compactness. A free copy of this paper and all supplemental materials are available at https://osf.io/kc3dg/.

摘要

图表常用于对实体之间的关系进行建模。图表中聚类的识别与可视化有助于在许多应用领域(如生命科学和社会科学)中发现见解。力导向图布局可提升聚类的视觉显著性,因为它能拉近相邻节点的距离,并推开不相邻的节点。同时,当应用合适的行/列排序时,矩阵可以有效地展示聚类,但对于未受过训练的用户来说,它缺乏直观的节点-链接隐喻,吸引力较小。因此,探索结合节点-链接隐喻和节点排序优势的布局是有价值的。在这项工作中,我们研究节点排序对可排序节点-链接图(即径向图、弧形图和对称弧形图)中聚类视觉显著性的影响。通过一项众包控制实验,我们表明,与三种先进的力导向布局算法(即“Linlog”、“Backbone”和“sfdp”)相比,使用可排序节点-链接图时,用户能够更一致、更准确地计数聚类,并且在很大程度上速度更快。在聚类可分离性低和/或紧凑性低的情况下,测量到的优势更大。本文的免费副本及所有补充材料可在https://osf.io/kc3dg/获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验