Kissi Mohamed, Pont Mathieu, Levine Joshua A, Tierny Julien
IEEE Trans Vis Comput Graph. 2025 Jan;31(1):97-107. doi: 10.1109/TVCG.2024.3456345. Epub 2024 Nov 25.
This paper presents a practical approach for the optimization of topological simplification, a central pre-processing step for the analysis and visualization of scalar data. Given an input scalar field $f$ and a set of "signal" persistence pairs to maintain, our approaches produces an output field $g$ that is close to $f$ and which optimizes (i) the cancellation of "non-signal" pairs, while (ii) preserving the "signal" pairs. In contrast to pre-existing simplification algorithms, our approach is not restricted to persistence pairs involving extrema and can thus address a larger class of topological features, in particular saddle pairs in three-dimensional scalar data. Our approach leverages recent generic persistence optimization frameworks and extends them with tailored accelerations specific to the problem of topological simplification. Extensive experiments report substantial accelerations over these frameworks, thereby making topological simplification optimization practical for real-life datasets. Our approach enables a direct visualization and analysis of the topologically simplified data, e.g., via isosurfaces of simplified topology (fewer components and handles). We apply our approach to the extraction of prominent filament structures in three-dimensional data. Specifically, we show that our pre-simplification of the data leads to practical improvements over standard topological techniques for removing filament loops. We also show how our approach can be used to repair genus defects in surface processing. Finally, we provide a C++ implementation for reproducibility purposes.
本文提出了一种优化拓扑简化的实用方法,这是标量数据分析和可视化的核心预处理步骤。给定一个输入标量场$f$和一组要保留的“信号”持久对,我们的方法会生成一个输出场$g$,它与$f$接近,并且优化了:(i) “非信号”对的消除,同时(ii) 保留“信号”对。与现有的简化算法不同,我们的方法不限于涉及极值的持久对,因此可以处理更大类别的拓扑特征,特别是三维标量数据中的鞍点对。我们的方法利用了最近的通用持久优化框架,并针对拓扑简化问题通过定制加速对其进行了扩展。大量实验表明,相对于这些框架有显著的加速,从而使拓扑简化优化对于实际数据集变得可行。我们的方法能够直接可视化和分析拓扑简化后的数据,例如通过简化拓扑的等值面(组件和柄更少)。我们将我们的方法应用于三维数据中突出丝状结构的提取。具体来说,我们表明数据的预简化相对于去除丝状环的标准拓扑技术带来了实际改进。我们还展示了我们的方法如何用于修复表面处理中的亏格缺陷。最后,为了便于重现,我们提供了一个C++实现。