Li Guozheng, Mi Haotian, Liu Chi Harold, Itoh Takayuki, Wang Guoren
IEEE Trans Vis Comput Graph. 2025 Jan;31(1):699-709. doi: 10.1109/TVCG.2024.3456389. Epub 2024 Nov 25.
When using exploratory visual analysis to examine multivariate hierarchical data, users often need to query data to narrow down the scope of analysis. However, formulating effective query expressions remains a challenge for multivariate hierarchical data, particularly when datasets become very large. To address this issue, we develop a declarative grammar, HiRegEx (Hierarchical data Regular Expression), for querying and exploring multivariate hierarchical data. Rooted in the extended multi-level task topology framework for tree visualizations (e-MLTT), HiRegEx delineates three query targets (node, path, and subtree) and two aspects for querying these targets (features and positions), and uses operators developed based on classical regular expressions for query construction. Based on the HiRegEx grammar, we develop an exploratory framework for querying and exploring multivariate hierarchical data and integrate it into the TreeQueryER prototype system. The exploratory framework includes three major components: top-down pattern specification, bottom-up data-driven inquiry, and context-creation data overview. We validate the expressiveness of HiRegEx with the tasks from the e-MLTT framework and showcase the utility and effectiveness of TreeQueryER system through a case study involving expert users in the analysis of a citation tree dataset.
在使用探索性可视化分析来检查多变量层次数据时,用户通常需要查询数据以缩小分析范围。然而,对于多变量层次数据而言,制定有效的查询表达式仍然是一项挑战,尤其是当数据集变得非常大时。为了解决这个问题,我们开发了一种声明式语法HiRegEx(层次数据正则表达式),用于查询和探索多变量层次数据。HiRegEx基于用于树形可视化的扩展多级任务拓扑框架(e-MLTT),它划定了三个查询目标(节点、路径和子树)以及用于查询这些目标的两个方面(特征和位置),并使用基于经典正则表达式开发的运算符来构建查询。基于HiRegEx语法,我们开发了一个用于查询和探索多变量层次数据的探索性框架,并将其集成到TreeQueryER原型系统中。该探索性框架包括三个主要组件:自上而下的模式规范、自下而上的数据驱动查询以及上下文创建数据概述。我们使用e-MLTT框架中的任务来验证HiRegEx的表达能力,并通过一个涉及专家用户分析引用树数据集的案例研究来展示TreeQueryER系统的实用性和有效性。