Wang Hui, Wang Zijian, Ma Jin, Chen Jian, Li Hong, Hao Weiju, Bi Qingyuan, Xiao Shuning, Fan Jinchen, Li Guisheng
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China.
J Colloid Interface Sci. 2025 Jan 15;678(Pt B):465-476. doi: 10.1016/j.jcis.2024.09.040. Epub 2024 Sep 5.
As a kind of promising oxygen evolution reaction (OER) catalysts, metal-organic frameworks (MOF) are often constrained by their inherent poor electroconductivity and structural instability. In this study, we developed a mono-dispersed zeolitic imidazolate framework-67@cuprous oxide (ZIF-67@CuO) core-shell catalyst via in-situ growth method for highly efficient alkaline OER. The ZIF-67@CuO shows an excellent OER activity with a low overpotential of 254 mV at 10 mA cm and Tafel slope of 87.9 mV·dec in 1.0 M KOH. Furthermore, the ZIF-67@CuO also shows a high turnover frequency (TOF) of 0.166 s at 1.60 V vs. RHE and long-term stability for 160 h at a high current density of 100 mA cm. The unique core-shell structure with the CuO core linked with ZIF-67 shell through interfacial di-oxygen bridge improves the structural stability, enhances the charge transfer, and provides more active sites. Moreover, the interfacial coordination structure was regulated from Co-N to Co-NO which elevates the valence of Co sites and optimizes the adsorption free energy of oxygen-containing intermediates, thus improving the electrocatalytic OER performance. This work could propose the way for designing novel MOF-based nanomaterials and developing desirable and robust heterogeneous OER catalysts.
作为一种很有前景的析氧反应(OER)催化剂,金属有机框架材料(MOF)常常受到其固有的低导电性和结构不稳定性的限制。在本研究中,我们通过原位生长法制备了一种单分散的沸石咪唑酯骨架-67@氧化亚铜(ZIF-67@CuO)核壳催化剂用于高效碱性OER。ZIF-67@CuO在1.0 M KOH中表现出优异的OER活性,在10 mA cm时过电位低至254 mV,塔菲尔斜率为87.9 mV·dec。此外,ZIF-67@CuO在相对于可逆氢电极(RHE)为1.60 V时还表现出0.166 s的高周转频率(TOF),并在100 mA cm的高电流密度下具有160 h的长期稳定性。独特的核壳结构中,CuO核通过界面双氧桥与ZIF-67壳相连,提高了结构稳定性,增强了电荷转移,并提供了更多活性位点。此外,界面配位结构从Co-N调节为Co-NO,提高了Co位点的价态,优化了含氧中间体的吸附自由能,从而提高了电催化OER性能。这项工作可为设计新型基于MOF的纳米材料和开发理想且稳定的非均相OER催化剂提供思路。