Suppr超能文献

共流阶跃乳化(CFSE)微流控装置及其在数字聚合酶链反应(ddPCR)中的应用研究。

Investigation of co-flow step emulsification (CFSE) microfluidic device and its applications in digital polymerase chain reaction (ddPCR).

机构信息

College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.

Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250399, China.

出版信息

J Colloid Interface Sci. 2025 Jan 15;678(Pt A):1132-1142. doi: 10.1016/j.jcis.2024.08.251. Epub 2024 Sep 2.

Abstract

HYPOTHESIS

The co-flow step emulsification (CFSE) is very sensitive to the two-phase fluid interfaces, we conjecture that the CFSE hydrodynamic model depends on several key factors and the droplet generation process can be precisely controlled, thus to obtain droplet emulsions with the "ultra-high volume fraction of inner-phase" and "flexible droplet size" characteristics. The resulting droplets are expected to be applied to droplet digital PCR (ddPCR) with "high information density" and "wide dynamic range" advances.

EXPERIMENTS

By combining numerical simulation and fluid dynamics experiments, we have investigated the crucial parameters affecting the CFSE two-phase interface and finally achieved the prediction and guidance for CFSE droplet production.

FINDINGS

With the help of the CFSE device, multivolume droplet populations were produced on demand. Then, ddPCR tests were performed with DNA concentrations from 10 copies/μL to 20,000 copies/μL. The CFSE device owns an ultra-wide dynamic range (up to 5 orders of magnitude), showing excellent quantification ability of nucleic acid targets.

摘要

假设

共流步乳化(CFSE)对两相流体界面非常敏感,我们推测 CFSE 流体动力学模型取决于几个关键因素,并且可以精确控制液滴生成过程,从而获得具有“超高内相体积分数”和“灵活的液滴尺寸”特征的液滴乳液。预计所得液滴将应用于具有“高信息密度”和“宽动态范围”优势的液滴数字 PCR(ddPCR)。

实验

通过结合数值模拟和流体动力学实验,我们研究了影响 CFSE 两相间界面的关键参数,最终实现了对 CFSE 液滴生成的预测和指导。

发现

借助 CFSE 装置,按需生成多体积液滴群体。然后,使用浓度为 10 拷贝/μL 至 20,000 拷贝/μL 的 DNA 进行 ddPCR 测试。CFSE 装置拥有超宽的动态范围(高达 5 个数量级),对核酸靶标具有出色的定量能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验