School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End, London, E1 4NS, UK.
Digital Environment Research Institute, Queen Mary University of London, Empire House Whitechapel, London, E1 1HH, UK.
Photosynth Res. 2024 Oct;162(1):75-92. doi: 10.1007/s11120-024-01118-1. Epub 2024 Sep 10.
In the next 10-20 years, several observatories will aim to detect the signatures of oxygenic photosynthesis on exoplanets, though targets must be carefully selected. Most known potentially habitable exo-planets orbit cool M-dwarf stars, which have limited emission in the photosynthetically active region of the spectrum (PAR, nm) used by Earth's oxygenic photoautotrophs. Still, recent experiments have shown that model cyanobacteria, algae, and non-vascular plants grow comfortably under simulated M-dwarf light, though vascular plants struggle. Here, we hypothesize that this is partly due to the different ways they harvest light, reflecting some general rule that determines how photosynthetic antenna structures may evolve under different stars. We construct a simple thermodynamic model of an oxygenic antenna-reaction centre supercomplex and determine the optimum structure, size and absorption spectrum under light from several star types. For the hotter G (e.g. the Sun) and K-stars, a small modular antenna is optimal and qualitatively resembles the PSII-LHCII supercomplex of higher plants. For the cooler M-dwarfs, a very large antenna with a steep 'energy funnel' is required, resembling the cyanobacterial phycobilisome. For the coolest M-dwarfs an upper limit is reached, where increasing antenna size further is subject to steep diminishing returns in photosynthetic output. We conclude that G- and K-stars could support a range of niches for oxygenic photo-autotrophs, including high-light adapted canopy vegetation that may generate detectable bio-signatures. M-dwarfs may only be able to support low light-adapted organisms that have to invest considerable resources in maintaining a large antenna. This may negatively impact global coverage and therefore detectability.
在未来 10-20 年内,几个天文台将旨在探测系外行星上产氧光合作用的特征,但目标必须精心选择。大多数已知的潜在可居住的系外行星都围绕着冷的 M 矮星运行,这些恒星在地球产氧光合作用者使用的光合有效区域(PAR,nm)中的发射有限。尽管如此,最近的实验表明,模型蓝细菌、藻类和非维管束植物在模拟 M 矮星光下舒适地生长,而维管束植物则很困难。在这里,我们假设这部分是由于它们收集光的方式不同,反映了一些普遍的规律,决定了在不同的恒星下光合作用天线结构可能如何进化。我们构建了一个产氧天线-反应中心超复合物的简单热力学模型,并确定了几种星型光下的最佳结构、大小和吸收光谱。对于更热的 G(例如太阳)和 K 星,小的模块化天线是最佳的,并且在质上类似于高等植物的 PSII-LHCII 超复合物。对于更冷的 M 矮星,需要一个非常大的天线和一个陡峭的“能量漏斗”,类似于蓝细菌的藻胆体。对于最冷的 M 矮星,达到了一个上限,进一步增加天线尺寸会导致光合作用输出的收益急剧减少。我们的结论是,G 和 K 恒星可以为产氧光合作用者提供一系列生态位,包括可能产生可检测生物特征的高光适应冠层植被。M 矮星可能只能支持低光适应的生物体,这些生物体必须投入大量资源来维持一个大天线。这可能会对全球覆盖率产生负面影响,从而降低可检测性。