Suppr超能文献

利用基于深度学习的运动校正算法改善心率不齐患者 CCTA 的图像质量和诊断性能。

Improving Image Quality and Diagnostic Performance of CCTA in Patients with Challenging Heart Rate Conditions using a Deep Learning-based Motion Correction Algorithm.

机构信息

Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.

Department of Radiology, West China Tianfu Hospital, Sichuan University, Chengdu, China.

出版信息

Curr Med Imaging. 2024;20:e15734056315753. doi: 10.2174/0115734056315753240827114209.

Abstract

OBJECTIVE

Challenging HR conditions, such as elevated Heart Rate (HR) and Heart Rate Variability (HRV), are major contributors to motion artifacts in Coronary Computed Tomography Angiography (CCTA). This study aims to assess the impact of a deep learning-based motion correction algorithm (MCA) on motion artifacts in patients with challenging HR conditions, focusing on image quality and diagnostic performance of CCTA.

MATERIALS AND METHODS

This retrospective study included 240 patients (mean HR: 88.1 ± 14.5 bpm; mean HRV: 32.6 ± 45.5 bpm) who underwent CCTA between June, 2020 and December, 2020. CCTA images were reconstructed with and without the MCA. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured to assess objective image quality. Subjective image quality was evaluated by two radiologists using a 5-point scale regarding vessel visualization, diagnostic confidence, and overall image quality. Moreover, all vessels with scores ≥ 3 were considered clinically interpretable. The diagnostic performance of CCTA with and without MCA for detecting significant stenosis (≥ 50%) was assessed in 34 patients at both per-vessel and per-patient levels, using invasive coronary angiography as the reference standard.

RESULTS

The MCA significantly improved subjective image quality, increasing the vessel interpretability from 89.9% (CI: 0.88-0.92) to 98.8% (CI: 0.98-0.99) (p < 0.001). The use of MCA resulted in significantly higher diagnostic performance in both patient-based (AUC: 0.83 vs. 0.58, p = 0.04) and vessel-based (AUC: 0.92 vs. 0.81, p < 0.001) analyses, with the vessel-based accuracy notably increased from 79.4% (CI: 0.72-0.86) to 91.2% (CI: 0.85-0.95) (p = 0.01). There were no significant differences in objective image quality between the two reconstructions. The mean effective dose in this study was 2.8 ± 1.1 mSv.

CONCLUSION

The use of MCA allows for obtaining high-quality CCTA images and superior diagnostic performance with low radiation exposure in patients with elevated HR and HRV.

摘要

目的

升高的心率(HR)和心率变异性(HRV)等具有挑战性的 HR 条件是冠状动脉 CT 血管造影(CCTA)运动伪影的主要原因。本研究旨在评估基于深度学习的运动校正算法(MCA)对具有挑战性 HR 条件的患者运动伪影的影响,重点是 CCTA 的图像质量和诊断性能。

材料和方法

本回顾性研究纳入了 240 例患者(平均 HR:88.1±14.5bpm;平均 HRV:32.6±45.5bpm),他们于 2020 年 6 月至 2020 年 12 月期间接受了 CCTA。使用和不使用 MCA 重建 CCTA 图像。测量信噪比(SNR)和对比噪声比(CNR)以评估客观图像质量。两名放射科医生使用 5 分制评估血管可视化、诊断信心和整体图像质量,对主观图像质量进行评估。此外,所有评分为≥3 的血管均被认为具有临床可解释性。使用经导管冠状动脉造影作为参考标准,在 34 例患者中分别在血管水平和患者水平评估使用和不使用 MCA 进行 CCTA 检测显著狭窄(≥50%)的诊断性能。

结果

MCA 显著改善了主观图像质量,使血管可解释性从 89.9%(CI:0.88-0.92)增加到 98.8%(CI:0.98-0.99)(p<0.001)。在患者水平(AUC:0.83 对 0.58,p=0.04)和血管水平(AUC:0.92 对 0.81,p<0.001)分析中,MCA 的使用均显著提高了诊断性能,血管水平的准确性从 79.4%(CI:0.72-0.86)显著提高到 91.2%(CI:0.85-0.95)(p=0.01)。两种重建方法之间的客观图像质量无显著差异。本研究的平均有效剂量为 2.8±1.1mSv。

结论

在 HR 和 HRV 升高的患者中,使用 MCA 可获得高质量的 CCTA 图像,并具有优异的诊断性能,同时辐射剂量较低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验