Suppr超能文献

基于深度学习的冠状动脉 CT 血管造影运动校正算法:降低形态学和功能评估的相位要求。

Deep learning-based motion correction algorithm for coronary CT angiography: Lowering the phase requirement for morphological and functional evaluation.

机构信息

Department of Radiology, West China Hospital of Sichuan University, Chengdu, China.

United Imaging Healthcare, Shanghai, China.

出版信息

J Appl Clin Med Phys. 2023 Sep;24(9):e14104. doi: 10.1002/acm2.14104. Epub 2023 Jul 24.

Abstract

PURPOSE

To investigate the performance of a deep learning-based motion correction algorithm (MCA) at various cardiac phases of coronary computed tomography angiography (CCTA), and determine the extent to which it may allow for reliable morphological and functional evaluation.

MATERIALS AND METHODS

The acquired image data of 53 CCTA cases, where the patient heart rate (HR) was ≥75 bpm, were reconstructed at 0, ±2, ±4, ±6, and ±8% deviations from each optimal systolic phase, with and without the MCA, yielding a total of 954 images (53 cases × 9 phases × 2 reconstructions). The overall image quality and diagnostic confidence were graded by two radiologists using a 5-point scale, with scores ≥3 being deemed clinically interpretable. Signal-to-noise ratio, contrast-to-noise ratio, vessel sharpness, and circularity were measured. The CCTA-derived fractional flow reserve (CT-FFR) was calculated in 38 vessels on 24 patients to identify functionally significant stenosis, using the invasive fractional flow reserve (FFR) as reference. All metrics were compared between two reconstructions at various phases.

RESULTS

Inferior image quality was observed as the phase deviation was enlarged. However, MCA significantly improved the image quality at nonoptimal phases and the optimal phase. Coronary artery evaluation was feasible within 4% phase deviation using MCA, with interpretable overall image quality and high diagnostic confidence. With MCA, the performance of identifying functionally significant stenosis via CT-FFR was increased for images at various phase deviations. However, obvious decrease in accuracy, as compared to the image at the optimal phase, was found on those with deviations >4%.

CONCLUSION

The deep learning-based MCA allows up to 4% phase deviation in acquiring CCTA for reliable morphological and functional evaluation on patients with high HRs.

摘要

目的

研究一种基于深度学习的运动校正算法(MCA)在冠状动脉 CT 血管造影(CCTA)不同心脏相位下的性能,并确定其在多大程度上能够进行可靠的形态和功能评估。

材料和方法

对 53 例心率(HR)≥75bpm 的 CCTA 患者采集的图像数据,在每个最佳收缩期相位±2、±4、±6 和±8%处进行重建,分别有和无 MCA,共得到 954 幅图像(53 例×9 个相位×2 个重建)。两位放射科医生使用 5 分制对整体图像质量和诊断信心进行评分,评分≥3 分被认为具有临床可解释性。测量信噪比、对比噪声比、血管锐利度和圆形度。在 24 例患者的 38 个血管中计算 CCTA 衍生的血流储备分数(CT-FFR),以识别有功能意义的狭窄,以有创血流储备分数(FFR)为参考。比较了两种重建方法在不同相位下的所有指标。

结果

随着相位偏差的增大,图像质量变差。然而,MCA 显著改善了非最佳相位和最佳相位的图像质量。使用 MCA,在 4%的相位偏差内进行冠状动脉评估是可行的,具有可解释的整体图像质量和高度的诊断信心。使用 MCA,通过 CT-FFR 识别功能意义上的狭窄的性能在各种相位偏差的图像中得到提高。然而,与最佳相位的图像相比,偏差>4%的图像的准确性明显下降。

结论

基于深度学习的 MCA 允许在获取 CCTA 时存在高达 4%的相位偏差,以便对高心率患者进行可靠的形态和功能评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验