Suppr超能文献

基于套索特征选择和机器学习的糖尿病患者骨折风险预测

Fracture risk prediction in diabetes patients based on Lasso feature selection and Machine Learning.

作者信息

Shi Yu, Fang Junhua, Li Jiayi, Yu Kaiwen, Zhu Jingbo, Lu Yan

机构信息

School of Computer Science & Technology, Soochow University, Suzhou, China.

Orthopedics Department, The First Affiliated Hospital of Soochow University, Suzhou, China.

出版信息

Comput Methods Biomech Biomed Engin. 2024 Sep 11:1-17. doi: 10.1080/10255842.2024.2400325.

Abstract

Fracture risk among individuals with diabetes poses significant clinical challenges due to the multifaceted relationship between diabetes and bone health. Diabetes not only affects bone density but also alters bone quality and structure, thereby increases the susceptibility to fractures. Given the rising prevalence of diabetes worldwide and its associated complications, accurate prediction of fracture risk in diabetic individuals has emerged as a pressing clinical need. This study aims to investigate the factors influencing fracture risk among diabetic patients. We propose a framework that combines Lasso feature selection with eight classification algorithms. Initially, Lasso regression is employed to select 24 significant features. Subsequently, we utilize grid search and 5-fold cross-validation to train and tune the selected classification algorithms, including KNN, Naive Bayes, Decision Tree, Random Forest, AdaBoost, XGBoost, Multi-layer Perceptron (MLP), and Support Vector Machine (SVM). Among models trained using these important features, Random Forest exhibits the highest performance with a predictive accuracy of 93.87%. Comparative analysis across all features, important features, and remaining features demonstrate the crucial role of features selected by Lasso regression in predicting fracture risk among diabetic patients. Besides, by using a feature importance ranking algorithm, we find several features that hold significant reference values for predicting early bone fracture risk in diabetic individuals.

摘要

由于糖尿病与骨骼健康之间存在多方面的关系,糖尿病患者的骨折风险给临床带来了重大挑战。糖尿病不仅会影响骨密度,还会改变骨质量和结构,从而增加骨折的易感性。鉴于全球糖尿病患病率的上升及其相关并发症,准确预测糖尿病患者的骨折风险已成为一项紧迫的临床需求。本研究旨在调查影响糖尿病患者骨折风险的因素。我们提出了一个将套索特征选择与八种分类算法相结合的框架。首先,使用套索回归来选择24个重要特征。随后,我们利用网格搜索和五折交叉验证来训练和调整所选的分类算法,包括K近邻、朴素贝叶斯、决策树、随机森林、自适应增强、极端梯度提升、多层感知器和支持向量机。在使用这些重要特征训练的模型中,随机森林表现出最高的性能,预测准确率为93.87%。对所有特征、重要特征和其余特征的比较分析表明,套索回归选择的特征在预测糖尿病患者骨折风险中起着关键作用。此外,通过使用特征重要性排序算法,我们发现了几个对预测糖尿病个体早期骨折风险具有重要参考价值的特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验