Suppr超能文献

用于预测中国糖尿病患者骨折风险的机器学习算法

Machine learning algorithms for predicting the risk of fracture in patients with diabetes in China.

作者信息

Chu Sijia, Jiang Aijun, Chen Lyuzhou, Zhang Xi, Shen Xiurong, Zhou Wan, Ye Shandong, Chen Chao, Zhang Shilu, Zhang Li, Chen Yang, Miao Ya, Wang Wei

机构信息

Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

Graduate School, Wannan Medical College, Wuhu, China.

出版信息

Heliyon. 2023 Jul 11;9(7):e18186. doi: 10.1016/j.heliyon.2023.e18186. eCollection 2023 Jul.

Abstract

BACKGROUND

Patients with diabetes are more likely to be predisposed to fractures compared to those without diabetes. In clinical practice, predicting fracture risk in diabetics is still difficult because of the limited availability and accessibility of existing fracture prediction tools in the diabetic population. The purpose of this study was to develop and validate models using machine learning (ML) algorithms to achieve high predictive power for fracture in patients with diabetes in China.

METHODS

In this study, the clinical data of 775 hospitalized patients with diabetes was analyzed by using Decision Tree (DT), Gradient Boosting Decision Tree (GBDT), Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), eXtreme Gradient Boosting (XGBoost) and Probabilistic Classification Vector Machines (PCVM) algorithms to construct risk prediction models for fractures. Moreover, the risk factors for diabetes-related fracture were identified by the feature selection algorithms.

RESULTS

The ML algorithms extracted 17 most relevant factors from raw clinical data to maximize the accuracy of the prediction results, including bone mineral density, age, sex, weight, high-density lipoprotein cholesterol, height, duration of diabetes, total cholesterol, osteocalcin, N-terminal propeptide of type I, diastolic blood pressure, and body mass index. The 7 ML models including LR, SVM, RF, DT, GBDT, XGBoost, and PCVM had f1 scores of 0.75, 0.83, 0.84, 0.85, 0.87, 0.88, and 0.97, respectively.

CONCLUSIONS

This study identified 17 most relevant risk factors for diabetes-related fracture using ML algorithms. And the PCVM model proved to perform best in predicting the fracture risk in the diabetic population. This work proposes a cheap, safe, and extensible ML algorithm for the precise assessment of risk factors for diabetes-related fracture.

摘要

背景

与非糖尿病患者相比,糖尿病患者更容易发生骨折。在临床实践中,由于现有骨折预测工具在糖尿病患者群体中的可用性和可及性有限,预测糖尿病患者的骨折风险仍然困难。本研究的目的是开发和验证使用机器学习(ML)算法的模型,以实现对中国糖尿病患者骨折的高预测能力。

方法

在本研究中,使用决策树(DT)、梯度提升决策树(GBDT)、逻辑回归(LR)、随机森林(RF)、支持向量机(SVM)、极端梯度提升(XGBoost)和概率分类向量机(PCVM)算法对775例住院糖尿病患者的临床数据进行分析,以构建骨折风险预测模型。此外,通过特征选择算法确定糖尿病相关骨折的危险因素。

结果

ML算法从原始临床数据中提取了17个最相关因素,以最大限度地提高预测结果的准确性,包括骨密度、年龄、性别、体重、高密度脂蛋白胆固醇、身高、糖尿病病程、总胆固醇、骨钙素、I型前胶原N端前肽、舒张压和体重指数。包括LR、SVM、RF、DT、GBDT、XGBoost和PCVM在内的7个ML模型的f1分数分别为0.75、0.83、0.84、0.85、0.87、0.88和0.97。

结论

本研究使用ML算法确定了17个与糖尿病相关骨折最相关的危险因素。并且PCVM模型在预测糖尿病患者骨折风险方面表现最佳。这项工作提出了一种廉价、安全且可扩展的ML算法,用于精确评估糖尿病相关骨折的危险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d4c/10368844/8e690e09e5d2/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验