Suppr超能文献

整合长链非编码RNA和信使RNA表达分析鉴定出与抑郁症的恢复力、易感性及抗抑郁反应特异性相关的分子。

Integrated Long Noncoding RNA and Messenger RNA Expression Analysis Identifies Molecules Specifically Associated With Resiliency and Susceptibility to Depression and Antidepressant Response.

作者信息

Wang Qingzhong, Wang Huizhen, Dwivedi Yogesh

机构信息

Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama.

出版信息

Biol Psychiatry Glob Open Sci. 2024 Jul 20;4(6):100365. doi: 10.1016/j.bpsgos.2024.100365. eCollection 2024 Nov.

Abstract

BACKGROUND

Depression involves maladaptive processes impairing an individual's ability to interface with the environment appropriately. Long noncoding RNAs (lncRNAs) are gaining traction for their role in higher-order brain functioning. Recently, we reported that lncRNA coexpression modules may underlie abnormal responses to stress in rats showing depression-like behavior. The current study explored the global expression regulation of lncRNAs and messenger RNAs (mRNAs) in the hippocampus of rats showing susceptibility (learned helplessness [LH]) or resiliency (non-LH) to depression and fluoxetine response to LH (LH+FLX).

METHODS

Multiple comparison analysis was performed with an analysis of variance via the and function in the R platform to identify the differential expression of mRNAs and lncRNAs among LH, non-LH, tested control, and LH+FLX groups. Weighted gene coexpression network analysis was used to identify distinctive modules and pathways associated with each phenotype. A machine learning analysis was conducted to screen the critical target genes. Based on the combined analysis, the regulatory effects of lncRNAs on mRNA expression were explored.

RESULTS

Multiple comparison analyses revealed differentially expressed mRNAs and lncRNAs with each phenotype. Integrated bioinformatics analysis identified novel transcripts, specific modules, and regulatory pairs of mRNA-lncRNA in each phenotype. In addition, the machine learning approach predicted lncRNA-regulated and genes in developing LH behavior, whereas joint analysis of mRNA-lncRNA pairs identified , , , and genes in depression-like behavior and and in antidepressant response.

CONCLUSIONS

The study shows a novel role for lncRNAs in the development of specific depression phenotypes and in identifying newer targets for therapeutic development.

摘要

背景

抑郁症涉及适应不良过程,损害个体与环境适当互动的能力。长链非编码RNA(lncRNA)因其在高级脑功能中的作用而受到越来越多的关注。最近,我们报道lncRNA共表达模块可能是表现出抑郁样行为的大鼠对应激异常反应的基础。本研究探讨了对抑郁症具有易感性(习得性无助[LH])或恢复力(非LH)的大鼠海马中lncRNA和信使RNA(mRNA)的整体表达调控,以及LH(LH+FLX)对氟西汀的反应。

方法

通过R平台中的 和 函数进行方差分析的多重比较分析,以确定LH、非LH、测试对照组和LH+FLX组之间mRNA和lncRNA的差异表达。使用加权基因共表达网络分析来识别与每种表型相关的独特模块和途径。进行机器学习分析以筛选关键靶基因。基于综合分析,探讨lncRNA对mRNA表达的调控作用。

结果

多重比较分析揭示了每种表型中差异表达的mRNA和lncRNA。综合生物信息学分析确定了每种表型中的新转录本、特定模块以及mRNA-lncRNA调控对。此外,机器学习方法预测了lncRNA在LH行为发展中调控的 和 基因,而mRNA-lncRNA对的联合分析确定了抑郁样行为中的 、 、 和 基因以及抗抑郁反应中的 和 基因。

结论

该研究显示了lncRNA在特定抑郁表型发展以及确定治疗开发新靶点方面的新作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d47/11385423/62c1d45bb81f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验